Tolerance for Predatory Wildlife

Adrian Treves1 and Jeremy Bruskotter2

A round the world, populations of many large, predatory animals are declining, with wide-ranging consequences for other species and ecosystem services (1). The declines have a variety of causes, but for mammalian carnivores and sharks, direct human causes of mortality predominate (2). Scientists and policy-makers have concluded that promoting human tolerance is critical to the success of predator conservation efforts (1, 3–5). Yet the factors that affect people’s tolerance of wildlife are not well understood.

The terms tolerance and intolerance are widely used to capture both individual-level judgments of predators (such as attitudes and perceptions), as well as individual behaviors (such as poaching) that directly or indirectly influence outcomes for predators (5). It is widely assumed that intolerant behavior toward predators—whether in the form of eradication policies (such as bounties) or illegal killing—is motivated by retaliation for real and perceived losses of livelihood (5, 6). Under this assumption, governments and private organizations aiming to protect predators have implemented economic incentives to reduce the perceived costs of predator conservation and raise tolerance for predators.

Sweden’s pioneering program that pays Sami reindeer herders to tolerate predators elucidates the limits and potential benefits of economic incentives for predator conservation. The Swedish government appears to be succeeding in protecting wolverines, brown bears, and lynxes by paying Sami villagers for each successful predator reproduction on communal grazing areas (6). However, the Sami have thus far refused to accept incentives for protecting gray wolves because these predators are perceived to scare and scatter reindeer widely. As a result, wolves have only recolonized south of the reindeer areas.

Since the early 1990s, livestock producers have been offered subsidies for predator-proof electric fencing and its installation in south-central Sweden. A correlational study of 445 Swedes living in wolf territories found that those who received subsidies tolerated wolves better than those who had not, regardless of the number of verified wolf attacks on sheep or dogs (7). However, the study could not rule out that tolerant farmers were more likely to accept government subsidies, or that intolerant farmers rejected subsidies because they took care of predator problems independently and illicitly.

These studies suggest that economic incentives can be used to increase tolerance for some predators and protect some from poaching. However, Liberg et al. concluded that between 1998 and 2009, an estimated 51% of Sweden’s wolves died of poaching; 69% of the latter were concealed by the perpetrators (8). Thus, incentives may change poaching behavior in some people but are not a panacea. The delivery of benefits may need to be supplemented by social change. Support for this idea comes from a correlational study of Kenyan Maasai livestock herders, which shows that lion killing diminished when compensation was paid for livestock losses and diminished further when trusted community members were paid to protect livestock, warn villagers of the presence of lions, and monitor lion movements (9).

The influence of peers and social norms on poaching intentions is revealed by research on Brazilian ranchers living near jaguar territories. On the basis of interviews with 268 Brazilian cattle ranchers about their intentions to kill jaguars illegally, Marchini and Macdonald concluded that social factors were more influential than retaliation for jaguar predation on cattle or perceived threats to humans (10). The ranchers’ intentions to kill jaguars positively correlated with the size of their land holdings and were best explained by social norms; ranchers who thought that others killed jaguars or expected such poaching were more intent to kill jaguars themselves. The social facilitation that results in areas where poaching is common and accepted can create predator-free zones as neighbors and associates coordinate their actions explicitly or tacitly (10).

Because some hunters in North America and Europe historically helped to conserve populations of valued game (such as deer and ducks), policy-makers in these regions often assume that hunters will also help to conserve predators designated as legal game. For example, a program that allowed up to 43 endangered wolves to be killed in Wisconsin had the explicit purpose of fostering greater social tolerance for wolves (11). Yet a study of 656 residents of Wisconsin’s wolf population range showed a decline in tolerance and an increase in intention to poach wolves between 2001 and 2009, after the implementation of government culling of wolves implicated in livestock attacks (12). Tolerance continued to

1Nelson Institute for Environmental Studies, University of Wisconsin, Madison, WI 53706, USA. 2School of Environment and Natural Resources, Ohio State University, Columbus, OH 43210, USA. E-mail: atreves@wisc.edu
Dysfunctional Mechanosensing in Aneurysms

Jay D. Humphrey,1 Dianna M. Milewicz,2 George Tellides,3 Martin A. Schwartz4

The aorta is the body’s main conduit for blood flow, passing through the chest and abdomen. When this artery’s wall—thick as a garden hose—weakens, the aorta can dilate abnormally, rupture, and cause life-threatening bleeding. Abdominal aortic aneurysms occur most commonly in individuals between 65 and 75 years old. By contrast, thoracic aortic aneurysms and dissections (TAADs) afflict the young as well and arise primarily from noninflammatory mechanisms that often involve underlying genetic mutations (1, 2). Rupture results from mechanical failure, but what renders the aortic wall vulnerable? It may be that TAADs arise from a failure of cellular mechanosensing.

All large arteries grow and remodel to establish and preserve mechanical homeostasis in response to changing hemodynamic conditions (3, 4). The thoracic aorta (see the figure) is subjected to the largest cyclic circumferential stretch from the distending blood pressure, and axial stretch from gross motions of the heart. Like other large arteries, it responds to sustained changes in blood pressure, but its extreme compliance and elastic recoil allow it to accommodate large changes in pressure-driven blood flow without changing the contraction of the smooth muscle cells within the wall.

Cells of the aortic wall are embedded in an extracellular matrix that bears most of the stress from blood pressure. Whereas wall stresses are typically 100 to 200 kPa, stresses supported or exerted by cells of the wall are about 3 to 5 kPa (4). This implies that the matrix shields these cells from high stresses. Yet, cells still must sense altered stresses to initiate appropriate remodeling (5, 6). Matrix proteins must also be prestressed when incorporated within existing stressed matrix to promote mechanical homeostasis (4). That is, smooth muscle cells and fibroblasts do not merely secrete collagen fibers; rather, they assemble organized collagen fibrils through force-dependent processes that involve adhesion proteins (integrins) and the cytoskeleton (actin and myosin) (7). Hence, cell sensing and regulation of a compliant extracellular matrix are fundamental to maintaining proper thoracic aortic function and structural integrity.

The aortic extracellular matrix consists of myriad proteins, glycoproteins, and glycosaminoglycans, but elastin and collagen play particularly important roles in compliance and recoil, and stiffness and strength, respectively. Smooth muscle cells and fibroblasts sense (5, 6) the mechanical state of this matrix through integrins and the cytoskeleton. Transduction of this information to intracellular signaling pathways allows them to control the synthesis of matrix components and alter their cytoskeleton in response to cycles of increased mechanical load (see the figure) (5, 6). This force-regulated matrix remodeling involves factors that are secreted by cells within the aortic wall. Smooth muscle cells and fibroblasts release transforming growth factor-β (TGF-β), a cytokine that binds to the matrix in latent form and is activated by proteases or integrins through force-dependent

1Department of Biomedical Engineering, Yale University, New Haven, CT, USA. 2Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA. 3Department of Surgery, Yale School of Medicine, New Haven, CT, USA. 4Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA. E-mail: martin.schwartz@yale.edu

References