
SPATIOTEMPORAL	TENDENCIES	OF	HUMAN	–	BLACK	BEAR	CONFLICTS	AND	THE	

EFFECTS	OF	CURRENT	CONFLICT	MITIGATION	STRATEGIES	IN	WISCONSIN	

	

By	

	

Zachary	K.	Voyles	

	

	

A	thesis	submitted	in	partial	fulfillment	of	the	requirements	for	the	degree	of	

	

	

Master	of	Science	

(Conservation	Biology	&	Sustainable	Development)	

	

at	the	

UNIVERSITY	OF	WISCONSIN‐	MADISON	

2013	



 

 

Table	of	Contents	

List	of	tables	and	figures	................................................................................................................	i	

List	of	maps	.......................................................................................................................................	ii	

Acknowledgements	.......................................................................................................................	iii	

Disclosure	statement	....................................................................................................................	iv	

CHAPTER	I	

Spatiotemporal	effects	of	nuisance	black	bear	management	in	Wisconsin	...............	1	

Abstract	.............................................................................................................................................................	1	

Introduction	....................................................................................................................................................	1	

	 Summary	of	nuisance	black	bear	management	.....................................................................	2	

Methods	............................................................................................................................................................	6	

Results	.............................................................................................................................................................	11	

Discussion	......................................................................................................................................................	14	

Literature	cited	............................................................................................................................................	19	

CHAPTER	II	

Spatiotemporal	variation	of	human–black	bear	conflict	and	predicting	complaints	
in	Wisconsin	...................................................................................................................................	22	

Abstract	...........................................................................................................................................................	22	

Introduction	..................................................................................................................................................	22	

	 Complaints	as	indicators	of	human‐black	bear	conflict...................................................	24	

	 Factors	contributing	to	human‐bear	conflict	.......................................................................	26	

Methods	..........................................................................................................................................................	35	

	 Response	variable	identification	...............................................................................................	35 

  Predictor	variable	identification	................................................................................................	40	

  Sub‐setting	the	data	for	future	validation	.............................................................................	46	

	 Zero‐inflated	mixed‐effects	models	(ZIP)	..............................................................................	46	

  Model	selection	and	validation	...................................................................................................	49	

Results	.............................................................................................................................................................	51	

	 Mapping	using	models	...................................................................................................................	60 

Discussion	......................................................................................................................................................	84	



 

 

Literature	cited	...........................................................................................................................................	91 

Concluding	Remarks	.................................................................................................................	100	

Literature	cited	.........................................................................................................................................	103	

Appendix	.......................................................................................................................................	104	

List	of	contents	.........................................................................................................................................	104	

Literature	cited	........................................................................................................................................	132 

	
 

 

 

	
  



List	of	Tables	and	Figures	
 

TABLES	

Chapter	I	

	 Table	1	...................................................................................................................................................	12
	 Table	2	...................................................................................................................................................	12
	 Table	3	...................................................................................................................................................	13
	 Table	4	...................................................................................................................................................	14	
	 Table	5	...................................................................................................................................................	17	

Chapter	II		

	 Table	1	...................................................................................................................................................	37
	 Table	2	...................................................................................................................................................	45
	 Table	3	...................................................................................................................................................	52
	 Table	4	...................................................................................................................................................	54
	 Table	5	...................................................................................................................................................	54	

  Table	6	...................................................................................................................................................	55	
 

FIGURES	

Chapter	I	

	 Figure	1	...................................................................................................................................................	8	
Figure	2	...................................................................................................................................................	9	

Chapter	II		

	 Figure	1	.................................................................................................................................................	39	
	 Figure	2	.................................................................................................................................................	40	

	  

	

 

	
 

 

i



List	of	Maps	
 

Risk	Level	Maps	

Map	A:		Observed	spring	and	early	summer	technical	assistance	........................................	62	
Map	B:		Predicted	(pre‐relativized)	spring	and	early	summer	technical	assistance	....	63	
Map	C:		Predicted	(relativized)	spring	and	early	summer	technical	assistance	.............	63	
Map	D:		Observed	minus	predicted	(pre‐relativized)	spring	and	early	summer		
	 	 technical	assistance	..........................................................................................................	65	
Map	E:		Observed	minus	predicted	(relativized)	spring	and	early	summer																				
	 	 technical	assistance	..........................................................................................................	65	
Map	F.1:		Observed	late	summer	and	fall	technical	assistance	..............................................	67	
Map	F.2:		Relativized	late	summer	and	fall	technical	assistance	...........................................	68	
Map	F.3:		Observed	minus	relativized	late	summer	and	fall	technical	assistance	.........	68	
Map	G.1:		Observed	spring	and	early	summer	direct	control	.................................................	69	
Map	G.2:		Relativized	spring	and	early	summer	direct	control	..............................................	70	
Map	G.3:		Observed	minus	relativized	spring	and	early	summer	direct	control	............	70	
Map	H.1:		Observed	late	summer	and	fall	direct	control	...........................................................	71	
Map	H.2:		Relativized	late	summer	and	fall	direct	control	.......................................................	72	
Map	H.3:		Observed	minus	relativized	late	summer	and	fall	direct	control	.....................	72	
Map	I.1:		Observed	spring	and	early	summer	agricultural	.......................................................	73	
Map	I.2:		Relativized	spring	and	early	summer	agricultural	...................................................	74	
Map	I.3:		Observed	minus	relativized	spring	and	early	summer	agricultural	.................	74	
Map	J.1:		Observed	late	summer	and	fall	agricultural	................................................................	75	
Map	J.2:		Relativized	late	summer	and	fall	agricultural	.............................................................	76	
Map	J.3:		Observed	minus	relativized	late	summer	and	fall	agricultural	...........................	76
	 	

Probability	Risk	Maps	

Map	K:		Spring	and	early	summer	technical	assistance	.............................................................	78	
Map	L:		Late	summer	and	fall	technical	assistance	......................................................................	79	
Map	M:		Spring	and	early	summer	direct	control	.........................................................................	80	
Map	N:		Late	summer	and	fall	direct	control	..................................................................................	81	
Map	O:		Spring	and	early	summer	agricultural	.............................................................................	82	
Map	P:		Late	summer	and	fall	agricultural	......................................................................................	83	

	

ii



Acknowledgements	

	 There	are	numerous	individuals	and	groups	that	made	it	possible	for	me	to	do	this	

research.		My	failure	to	include	every	person	does	not	in	any	way	mean	that	I	am	not	

appreciative	for	the	help	he	or	she	might	have	given.		Nothing	that	follows	was	formed	without	

intense	support	from	people	who	cared.			

	 Let	me	start	by	thanking	my	family	who	encouraged	me	to	study	wildlife	and	to	go	

wherever	I	needed	to	have	a	fulfilling	academic	career.		I	am	also	grateful	for	all	of	my	friends	

who	have	given	me	respite	from	the	hardships	of	scholarship	in	addition	to	lending	their	ears	

for	my	many	questions	about	school,	life	and	ladies.		Without	my	family	and	friends,	my	sanity	

might	very	well	be	in	question.			

	 I’d	like	to	thank	Adrian	Treves,	my	advisor,	for	all	of	his	thoughtful	advice	and	his	

willingness	to	accept	me	into	his	Carnivore	Coexistence	Lab.		His	commitment	to	carnivore	

coexistence	brought	me	to	Madison,	and	his	interest	in	my	work	and	commitment	to	my	success	

has	kept	me	here.		My	other	committee	members	have	also	made	it	possible	for	this	research,	

and	I	am	indebted	to	their	constructive	criticism	and	advice	throughout	this	process.		The	

people	of	the	Wisconsin	DNR	and	USDA‐APHIS,	Wildlife	Services	should	also	be	commended	on	

their	interest	in	this	research.		Were	it	not	for	their	commitment	to	managing	black	bears	and	

mitigating	human‐bear	conflicts,	there	would	have	been	no	data	with	which	to	do	this	work.		My	

fellow	lab‐mates	have	served	as	colleagues	and	friends	throughout	my	time	in	Madison.		I	would	

especially	like	to	thank	Erik	Olson	and	Christine	Browne‐Nuñez	who	were	always	there	when	I	

needed	them.		A	final	thank	you	goes	to	the	work	of	others.		Whether	their	work	took	the	form	

of	a	textbook,	newspaper	article,	or	peer‐reviewed	article	I	could	not	have	gotten	here	without	

the	contributions	of	others.			

“Examine	each	question	in	terms	of	what	is	ethically	and	aesthetically	right,	as	well	as	what	is	
economically	expedient.	A	thing	is	right	when	it	tends	to	preserve	the	integrity,	stability,	and	
beauty	of	the	biotic	community.	It	is	wrong	when	it	tends	otherwise.”	

	 ―	Aldo	Leopold	

“Science	can	only	ascertain	what	is,	but	not	what	should	be,	and	outside	of	its	domain	value	
judgments	of	all	kinds	remain	necessary.”		
	 	
	 ―	Albert	Einstein		 		 		 	

iii



“This	material	was	made	possible,	in	part,	by	financial	assistance	from	the	United	States	
Department	of	Agriculture’s	Animal	and	Plant	Health	Inspection	Service	(APHIS).		It	

may	not	necessarily	express	APHIS’	views.”	

iv



 

 

Spatiotemporal	Effects	of	Nuisance	Black	Bear	Management	Actions	in	
Wisconsin,	USA	

	
ABSTRACT	

	
Black	bears	(Ursus	americanus)	and	humans	commonly	come	into	conflict	throughout	

the	Northern	Great	Lakes	Region,	including	Wisconsin.		From	2008	to	2010,	wildlife	

managers	working	under	Wisconsin’s	US	Department	of	Agriculture	–	Animal	and	Plant	

Health	Inspection	Service,	Wildlife	Services,	provided	technical	assistance	and	live‐

trapping	to	mitigate	nuisance	complaints	from	residents.		I	examine	the	spatial	and	

temporal	effects	of	these	management	responses	using	hazard	analysis.		I	estimate	the	

hazard	for	subsequent	complaints	by	estimating	the	latency	period	between	a	

management	response	and	a	future	complaint.		I	show	that	as	one	expands	outward	in	

distance	from	the	original	complaint	site,	latency	period	decreases.		Additionally,	the	

number	of	bears	that	were	translocated	from	a	conflict	location	was	not	associated	with	

decreased	hazard.		I	discuss	hypotheses	for	why	this	might	have	occurred.		The	

percentage	of	locations	that	did	not	have	a	subsequent	complaint	was	nearly	identical	

for	both	technical	assistance	and	live‐trapping.			

	
Keywords	
	
Conflict,	American	black	bear,	live‐trapping,	technical	assistance,	mitigation,	hazard	

analysis,	complaints,	nuisance	

INTRODUCTION	

Human‐black	bear	conflict	(i.e.,	complaint	from	an	encounter	between	an	

American	black	bear(s)	(Ursus	americanus)	and	a	person	or	person’s	property)	is	an	

issue	natural	resource	agencies	face	annually	across	the	United	States	and	Canada.		

Wisconsin	is	no	exception,	and	there	are	many	areas	where	black	bear	activities	directly	

or	indirectly	intersect	human	activity.		Successful	conflict	mitigation	and	an	ability	to	

abate	future	conflict	are	a	high	priority	for	both	the	public	and	wildlife	managers.		
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Recently,	researchers	have	tested	the	effectiveness	of	various	non‐lethal	bear‐human	

conflict	mitigation	techniques	(e.g.,	Peine	2001,	Beckmann	et	al.	2004,	Ziegltrum	2004).		

Black	bears	are	expanding	across	much	of	their	range	and	human	populations	continue	

to	rise	(Williamson	2002,	IUCN	2012).		Evaluating	the	spatiotemporal	effects	of	

management	responses	to	mitigate	conflicts	is	vital	to	the	advancement	of	methods	and	

techniques	for	reducing	human‐bear	conflict.							

Here,	I	compare	the	spatiotemporal	effects	of	two	mitigation	actions	performed	

by	the	US	Department	of	Agriculture	–	Animal	and	Plant	Health	Inspection	Service,	

Wildlife	Services	(WS)	in	response	to	black	bear	nuisance	complaints	from	2008	

through	2010.		WS	carried	out	two	primary	mitigation	actions	–	technical	assistance	

and	live‐trapping.		I	define	the	spatiotemporal	effects	of	a	management	action	as	the	

hazard	for	a	subsequent	complaint	in	the	vicinity	(≤	9	mi2	area)	of	a	management	

response.		A	long	latency	period	between	a	management	response	and	a	subsequent	

complaint	would	correlate	with	a	low	hazard	rate	within	the	vicinity	of	the	

management	response.			

Summary	of	Nuisance	Black	Bear	Management	

A primary method for mitigating damage caused by black bear throughout the U.S. 

and Wisconsin is live-trapping and relocation (translocation) of nuisance bears (Stowell and 

Willging 1992, Linnell et al. 1997, Witmer and Whittaker 2001, Spencer et al. 2007)1.  

Wisconsin	has	translocated	problem	bears	since	the	1950s	(Hygnstrom	and	Hauge	

1989).		The efficacy of translocating carnivores, generally, has been questioned in recent 

                                                            
1 Approximately 75% of North American wildlife management agencies (n=48) relocate problem bears 
(Spencer et al. 2007) 
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years (Fontúrbel and Simonetti 2011).  Biologists have noted the extraordinary ability of 

black bears to home back to their capture site after relocation (Harger 1970, Rutherglen and 

Herbison 1977, Massopust and Anderson 1984, Rogers 1986, Fies et al. 1987, Linnell et al. 

1997, Landriault 1998).  A close alternative to translocation is on-site release, where trapped 

bears are not moved but released at the site of capture. On-site release of black bears has 

been shown to be effective under certain circumstances, such as for day-active bears and 

non-family groups (Shull 1994, Clark et al. 2002).  As of 2007, 42% of states and provinces 

with black bears regularly practiced on-site release of black bears (Spencer et al. 2007). 

Wisconsin WS prefers translocation, although on-site release may be practiced if partial 

family groups are caught (Spencer et al. 2007, Koele 2010)2.  Evaluating	the	success	of	

black	bear	translocations	has	been	measured	by	monitoring	translocated	bears	post‐

release	(Alt	et	al.	1977,	McArthur	1981,	Massopust	and	Anderson	1984,	Fies	et	al.	1987,	

Shull	1994,	Linnell	et	al.	1997,	Landriault	1998).			Results	vary,	even	within	studies,	

indicating	the	potential	for	translocated	bears	to	either	cease	or	continue	causing	

problems.		For	example,	Landriault	(1998)	found	that	anywhere	from	10%	to	48%	of	

relocated	nuisance	bears	in	South	Ontario	were	repeat	offenders.		Opinions	on	

translocation	also	vary,	but	many	managers	continue	to	rely	on	it	as	a	method	for	

mitigating	human‐bear	conflict.		Spencer	et	al.	(2007)	found	that	94%	of	agencies	

practicing	translocation	in	North	America	monitored	bears	post‐release	at	least	some	of	

the	time;	Wisconsin	ceased	ear	tagging	bears	post‐release	in	2003	(WDNR	2003).			

	 Public	agencies	regularly	provide	educational	materials	to	help	the	public	

                                                            
2 On‐site release is practiced if young cubs are caught and the mother cannot be captured (Willging, pers. 
comm.) 
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coexist	with	bears.		I	view	technical	assistance	as	a	particular	form	of	education,	being	

aimed	at	the	individual	rather	than	a	mass	audience.		Past	research	has	shown	that	

educational	programs	with	goals	of	mitigating	or	preventing	human‐bear	conflict	are	

rarely	critically	reviewed	by	the	groups	that	administer	them,	and	when	they	are	

explored	complaints	commonly	serve	as	the	measure	of	effectiveness	(Gore	et	al.	2006).		

Despite	bear	managers’	reliance	on	education,	assessing	the	efficacy	of	the	technique	at	

regional	scales	is	rarely	attempted.		In	Wisconsin,	nearly	three	quarters	(71%)	of	an	

annual	average	of	947	nuisance	complaints	were	handled	solely	with	technical	

assistance	from	2008	to	2010.		In	these	instances,	WS	staff	assessed	a	complaint	over	

the	telephone	and	provided	brief	consultation,	during	which	recommendations	for	

avoiding	future	conflict	were	provided.		In	some	instances,	a	visit	to	the	complainant’s	

property	was	made.		Site	visits	were	made	at	the	discretion	of	WS	staff.		To	my	

knowledge,	no	empirical	measure	of	area‐wide	effects	of	technical	assistance	in	

Wisconsin	has	been	performed	other	than	comparing	annual	sums	of	complaints	

(Engstrom	et	al.	2008,	2009,	2010).		Gore	(2006)	suggests	that	management	efforts	

could	serve	as	an	explanatory	variable	to	provide	a	more	reliable	measure	of	

effectiveness	beyond	mere	complaint	counts.		Howe	et	al.	(2010)	suggests	that	

complaints	may	not	be	a	reliable	indicator	of	conflict	if	they	are	not	examined	in	

context.		Thus,	throughout	my	analyses	I	remained	cognizant	of	possible	contributing	

factors	external	of	complaints.			

I	analyzed	black	bear	complaints	in	Wisconsin	from	2008‐10	by	compiling	WS	

complaint	records.		My	analyses	attempt	to	evaluate	the	effects	of	management	
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responses	by	taking	into	account	the	type	of	response	and	the	interval	between	

successive	complaints	at	three	spatial	scales.		The	question	I	asked	regards	the	

longevity	of	two	management	responses	–	technical	assistance	&	live‐trapping	–	as	

measured	by	the	latency	period	between	a	management	response	and	a	subsequent	

complaint.		Management	response	to	a	human‐black	bear	conflict	at	location	x	at	time	t	

is	not	expected	to	prevent	future	conflict	indefinitely.		Therefore,	I	predicted	the	latency	

period	to	be	longer	over	a	narrow	spatiotemporal	window	(e.g.,	a	complainant’s	

property	during	a	week’s	time)	than	a	wider	spatiotemporal	window	(e.g.,	a	township	

over	the	course	of	a	month).		This	is	the	rationale	behind	hypothesis	one.		

Hypothesis	1:		The	time	interval	(t1‐t0)	between	a	management	response	
and	a	subsequent	complaint	is	negatively	correlated	with	the	distance	
between	the	management	response	location	x0	and	the	subsequent	
nearest	complaint	location	x1.		

	
With	these	data,	it	would	be	unwise	to	make	a	direct	comparison	between	these	

two	management	responses	because	of	the	difference	in	the	rationales	behind	their	

implementation.		For	minor	conflicts,	technical	assistance	is	standard	protocol.		If	the	

conflict	is	perceived	by	WS	as	dangerous	for	an	individual	or	a	bear,	then	live‐trapping	

is	preferred.		And,	in	the	rare	case	of	an	extreme	safety	concern,	bears	are	euthanized.			

But,	a	more	detailed	look	at	live‐trapping	is	still	warranted.		Although	bears	are	not	

always	captured	when	live‐trapping	is	used,	most	(>	90%)	successful	captures	result	in	

bear	relocation.		It	is	unknown,	however,	the	degree	to	which	live‐trapping	bears	may	

affect	the	hazard	of	a	subsequent	conflict	in	the	area.		This	is	the	rationale	behind	

hypothesis	two.	
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Hypothesis	2:		The	time	interval	(t1‐t0)	between	when	a	live‐trap	is	set	and	
a	subsequent	complaint	differs	based	upon	the	number	of	bears	
translocated	from	the	vicinity.			

	
METHODS	

	 In	1990,	the	Wisconsin	Department	of	Natural	Resources	(WDNR)	entered	into	a	

cooperative	agreement	with	WS	to	manage	nuisance	bears	(Engstrom	et	al.	2010).		WS	

has	been	recording	public	complaints	since.			From	2008	to	2010,	black	bear	complaints	

were	telephoned	into	WS	offices	in	Rhinelander	and	Waupun,	Wisconsin.		WS	recorded	

~2,840 complaints from 2008 to 2010, and live-trapped ~725 bears.  Sixty-eight percent	(±	

9%	annually,	n	=	3	years)	of	first‐time	nuisance	bear	complaints	were	addressed	by	

technical	assistance.		This	is	consistent	with	pre‐1990	rates	reported	by	WDNR	staff,	

which	were	estimated	to	be	75%	for	Northwest	Wisconsin	in	1986	(Hygnstrom	and	

Hauge	1989).		Repeat	complaints	within	the	same	year	at	the	same	property	were	

referred	to	a	WS	field	technician	provided	the	complainant	reported	he	or	she	had	

complied	with	previous	recommendations	given	by	telephone.		For	repeat	complaints,	a	

technician	either	offered	further	technical	assistance	(41%	±	7%)	or	provided	live‐

trapping	(58%	±	6%).		Approximately	25%	(±	1%)	of	first‐time	calls	were	mitigated	

with	live‐trapping,	bypassing	technical	assistance	altogether.		These	were	primarily	in	

situations	that	were	believed	by	WS	to	involve	health	and	human	safety.			In	sum,	live‐

trapping	was	typically	dependent	upon	prior	technical	assistance	which	accompanied	

live‐trapping	also,	so	I	could	not	compare	the	two	directly.			

	 When	WS	implemented	live‐trapping	on	a	property,	61%	(±	5%,	n	=	3	years)	of	

those	resulted	in	bear	capture.		Then,	93%	(±3%)	of	captured	bears	were	translocated,	
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and	the	remaining	captured	bears	were	either	euthanized	(3%	±	1%)	or	were	released	

on‐site	or	taken	to	a	rehabilitation	center	(i.e.,	orphaned	cubs)	(3%	±	1%).		WS	

addressed	complaints	involving	agricultural	damage	using	a	distinctly	different	set	of	

procedures	for	a	complainant’s	property	(Wildlife	Damage	Abatement	and	Claims	

Program,	WDACP)	and	are	therefore	excluded	from	this	analysis.			

I	obtained	addresses	of	complainants	from	WS	reports	and	entered	them	into	an	

excel	spreadsheet.		Per	USDA	and	UW‐Madison	rules	regarding	personally	identifiable	

information,	addresses	and	names	were	anonymized.		Thus,	I	generalized	addresses	to	

a	previously	agreed	upon	area	equal	to	one	square	mile	using	the	Public	Land	Survey	

System	(PLSS)	section	as	the	geographical	unit	(Fig.	1).		Addresses	that	could	not	be	

geo‐located	to	at	least	an	80%	level	of	accuracy	were	not	mapped	but	did	remain	in	the	

analysis	if	the	property	could	be	uniquely	identified	(ESRI	2009).		Records	that	

documented	subsequent	complaints	at	a	location	in	less	than	a	24‐hour	window	were	

omitted.		I	did	this	to	allow	WS	enough	time	to	respond	to	a	bear	complaint	and	to	help	

avoid	pseudoreplication	by	artificially	inflating	the	sample.		I	also	removed	repeat	

complaints	that	originated	from	the	same	property	to	avoid	taking	multiple	measures	of	

longevity	for	any	one	location.		Of	approximately	3,460	complaints	reported	by	WS	

from	2008‐10	(Engstrom	et	al.	2008,	2009,	2010),	I	was	able	to	record	2,697	(78%)	

using	the	preceding	criteria	with	an	additional	143	(4%)	that	could	not	be	mapped	

reliably,	but	were	identifiable	as	a	unique	property.		Lastly,	for	hypothesis	two	I	

excluded	properties	with	live‐trapping	that	had	on‐site	release,	euthanasia,	or	cubs	

taken	to	a	rehabilitation	center	(these	cases	remained	for	my	analysis	of	hypothesis	
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one).		A	total	of	38	locations	from	2008‐10	were	excluded	for	those	reasons,	which	

approximated	to	5%	of	all	live‐trapping	observations.				

	

(Figure	1)	Management	response	location	generalized	to	1	mi2	

A	complainant’s	property	(xi)	and	the	corresponding	generalized	Wisconsin	PLSS	section	(1	mi2).	

	

	

 

 

 

 

 

 

	

My	approach	to	answering	the	question	of	latency	period	was	to	identify	a	

nuisance	complaint	at	a	given	location	and	year	and	then	identify	any	subsequent	

nuisance	complaint	in	the	vicinity	after	the	management	response	within	the	same	year.			

Essentially,	each	location	entered	the	study	at	the	time	of	management	response	and	

left	the	study	either	when	a	subsequent	complaint	was	reported	in	the	vicinity	or	was	

set	to	the	maximum	Julian	date	of	365	and	its	latency	period	censored	if	there	was	no	

subsequent	complaint.		These	were	not	dropped	from	the	analysis	but	were	coded	in	a	

way	that	indicated	whether	or	not	a	complaint	was	made.		Censoring	provides	a	more	

reliable	estimate	of	longevity	by	taking	into	consideration	those	locations	having	a	

default	t1	value	of	365.			I	used	ArcMap	v.	10.0	to	perform	a	spatial	query	to	locate	x1t1	at	

the	PLSS	levels,	and	a	logical	query	in	Excel	to	locate	x1t1	for	the	anonymized	properties.			

The	resulting	time	intervals	(t1‐t0)	measured	the	latency	period	between	a	management	

 

 

1	mi 

1	mi 

 

xi	
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response	and	a	subsequent	complaint.	

	 I	chose	three	spatial	scales	for	vicinities:	A)	complainant’s	property	(n	=	2,846);	

B)	PLSS	section	of	1	mi2	(n	=	2,697);	and	C)	9	mi2	block	of	PLSS	sections	(n	=	2,697)	(Fig.	

2).		Complaints	from	2008	to	2010	were	examined,	each	having	received	a	Julian	date	

that	ranged	from	January	1	to	December	31	(maximum	possible	value	=	365).				I	

assumed	independence	of	management	responses	both	within	and	among	years.		This	is	

reasonable,	because	WS	responds	to	all	complaints	regardless	of	whether	a	complaint	

has	previously	been	reported	at	a	property	or	in	an	area.		However,	I	acknowledge	that	

there	are	instances	where	my	assumption	of	independence	would	be	violated	if,	for	

example,	a	single	bear	or	family	group	generated	multiple	complaints.		I	attempted	to	

address	possible	non‐independence	of	complaints	by	using	the	date	of	the	complaint	as	

the	measure	rather	than	the	sum	number	of	complaints	in	an	area	or	at	a	location.			

(Figure	2)	Management	response	location	and	subsequent	complaint	location	for	Wisconsin	2008‐2010	
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My	methods	follow	those	of	event	history	analysis	(EHA)	(Brostram	2012).		The	

Nelson	–	Aalen	estimator	of	the	cumulative	hazard	function	is	used	in	survival	analyses	

and	allows	for	censoring	(i.e.,	incorporating	unobserved	responses	into	the	estimate).		

Rather	than	estimating	survival	(s),	though,	it	provides	a	hazard	estimate	(1‐s).			It	is	a	

conditional	measure	of	hazard;	which	in	this	case	means	that	given	a	management	

response,	it	estimates	the	cumulative	proportion	of	locations	at	risk	for	a	subsequent	

complaint	at	time	t.		The	estimator	is	given	as		

	

ሻݐ෡ሺܪ ൌ ෍ ቈ	ቆ
݆	݁݉݅ݐ	ݐܽ	ݏݐ݈݊݅ܽ݌݉݋ܿ	ݐ݊݁ݑݍ݁ݏܾݑݏ	݂݋	ݎܾ݁݉ݑܰ ൌ ௝݀

݆	݁݉݅ݐ	ݐܽ	݇ݏ݅ݎ	ݐܽ	ݏ݊݋݅ݐܽܿ݋݈	݂݋	ݎܾ݁݉ݑܰ ൌ 	 ௝ݎ
ቇ቉

௧ೕஸ௧	

	

	

I	refined	the	hazard	estimator,	adding	variables	using	a	Cox	proportional	

hazards	regression	(Brostram	2012).		I	incorporated	vicinity	(z1)	and	the	number	of	

bears	translocated	(z2)	in	the	vicinity	of	x0	from	t0	to	t1	into	the	estimators.		A	possible	

confounding	factor	was	that	some	PLSS	sections	and	blocks	of	9	PLSS	sections	had	

multiple	management	responses	within	a	season,	and	thus	had	multiple	measures	

latency	periods.		I	added	a	categorical	variable	(z3)	for	sections	(1	mi2)	and	section	

blocks	(9	mi2)	to	indicate	whether	an	area	had	previous	management	responses	in	the	

same	year	(1)	or	not	(0).		Another	confounding	variable	involves	the	seasonal	variation	

in	bear	damage.		Black	bear	complaints	transition	from	being	primarily	nuisance	to	

agricultural	close	to	the	month	of	August	(see	Chapter	II).		Wisconsin	WS	mitigation	

efforts	and	techniques	undergo	a	dramatic	shift	at	this	time.		Therefore,	I	ran	an	
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additional	regression	using	a	binary	variable	(z4)	to	code	for	management	responses	

that	happened	at	a	given	property	either	before	1	August	(0)	or	after	1	August	(1).		

Cox’s	regression	formula,	which	in	this	case	measures	conditional	hazard	at	time	t	given	

variable	z	is		

݄ሺݖ|ݐሻ ൌ ݄଴ሺݐሻ	݁
ሼఉᇲ௭ሽ	

	

To	test	for	an	effect	of	vicinity	(z1)	on	hazard	or	management	response	longevity	

(hypothesis	one),	I	performed	a	Wald	test	using	statistical	packages	‘eha’	and	‘survival’	

in	R	2.15.1.		To	test	hypothesis	two,	I	compared	differences	in	hazard	as	explained	by	

the	number	of	bears	captured	(z2)	also	using	a	Wald	test.		Finally,	I	regressed	the	two	

binary	variables	(z3	&	z4)	independently	and	interpreted	significance	using	Wald	tests.		

All	tests	of	significance	were	performed	with	alpha	(α)	set	to	0.05.		Tendency	was	

defined	as	having	a	probability	where	α	<	p	<	2α.			

RESULTS	

There	were	2,532	conflict	locations	monitored	post‐management	response	at	

the	two	larger	spatial	scales	(1	mi2	&	9	mi2)	between	2008	and	2010	and	2,669	conflict	

locations	at	the	property	level	(smallest	spatial	scale).		The	number	of	locations	having	

no	subsequent	complaint	(i.e.,	censored)	showed	an	inverse	relationship	with	vicinity	

(Table	1).		A	Cox	regression,	where	hazard	was	a	function	of	vicinity	(z1)	yielded	a	

significant	positive	correlation	with	distance	(Table	2).			Regardless	of	management	

response	type,	the	relative	hazard	for	a	subsequent	complaint	was	higher	by	a	factor	of	

3.6	when	I	expanded	the	vicinity	from	the	property	level	to	1	mi2;	and	by	a	factor	of	8.7	
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when	I	expanded	it	to	9	mi2.		Relative	hazard	is	a	ratio	of	two	hazards,	with	the	relative	

hazard	being	in	reference	to	1.		In	the	case	of	categorical	variables,	one	of	the	categories	

serves	as	the	reference,	whereas	for	a	continuous	variable	a	value	of	‘0’	serves	as	the	

default	reference.	

(Table	1)	Management’s	response	and	observed	outcome	post‐intervention		
Number	of	management	responses	to	black	bear	complaints,	subsequent	complaints	and	the	proportion	
of	locations	censored	(having	no	subsequent	complaint	and	thus	maximum	longevity)	for	each	vicinity	
level	and	management	response	type	in	Wisconsin	2008‐2010.	
	
	
Vicinity	
Response	

Mgmt.	Response	
(x0t0)	

Subs.	Complaints	
(x1t1)	

Percentage	
Censored	

Property		 2,669	 178	 93.3%	
Live‐trapping	 722	 68	 90.9%	
Technical	assistance	 1,947	 112	 94.2%	

Section	=	1	mi2		 2,532	 557	 78.0%	
Live‐trapping	 720	 145	 80.0%	
Technical	assistance	 1,812	 412	 77.3%	
Block	=	9	mi2		 2,532	 1,134	 55.2%	
Live‐trapping		 720	 322	 55.3%	
Technical	assistance	 1,812	 812	 55.2%	
 
	
	
(Table	2)	Relative	complaint	hazards	for	areas	in	the	vicinity	of	a	management	response	
Cox	regression	analysis	using	vicinity	as	a	predictor	variable	for	hazard	of	a	subsequent	complaint	in	the	
vicinity	from	2008‐10	in	Wisconsin.		Rel.	hazard	is	hazard	relative	to	the	reference	(property	level).	
Significance	is	defined	at	α	=	0.05.			
	
	
Variable		z1					Mean	 Coefficient	 Rel.	Hazard S.E. Wald	p

Property	 0.418	 0	 1	(reference)	    

1	mi2	 0.337	 1.283	 3.608	 0.086	 <	0.001***	

9	mi2	 0.244	 2.162	 8.685	 0.081	 <	0.001***	
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(Table	3)	Relative	complaint	hazards	and	associations	with	bear	translocations		
Cox	regression	analysis	using	the	number	of	translocated	bears	from	2008‐10	in	Wisconsin	as	a	predictor	
for	hazard	of	a	subsequent	complaint	in	the	vicinity.		Rel.	hazard	is	hazard	relative	to	zero	bears	having	
been	translocated.	Significance	is	defined	at	α	=	0.05.			
	
Variable		z2							 Mean	 Coefficient	 Rel.	Hazard	 S.E.	 Wald	p	

Per	translocation	from	property	 0.863	 0.248	 1.282	 0.09	 0.004**	

Per	translocation	from	1	mi2	 0.878	 ‐0.024	 0.976	 0.08	 0.766	

Per	translocation	from	9	mi2	 0.876	 0.005	 1.005	 0.05	 0.932	

 
 

Hazard	at	the	property	level	was	significantly	higher	when	more	bears	were	

removed	(Rel.	hazard	=	1.28,	S.E.	=	0.09,	p	=	0.004).		That	is,	relative	hazard	for	a	

property	increased	by	a	factor	of	1.28	per	translocated	bear.		There	was	no	significant	

association	between	the	number	of	translocations	and	hazard	at	either	the	1	mi2	or	9	

mi2	levels	(Table	3).		When	I	tested	for	an	effect	of	previous	management	action	(z3)	

within	a	PLSS	section	on	relative	hazard,	I	found	an	approximate	2‐	to	3‐fold	increase	if	

that	section	had	prior	management	response	that	year	(Table	4).		Allowing	for	standard	

error,	the	hazard	at	the	9	mi2	level	was	approximately	2.0	times	higher	for	locations	

having	had	either	prior	technical	assistance	or	live‐trapping	(S.E.	=	0.087,	p	<	0.001;	S.E.	

=	0.208,	p	=	0.003).			Hazard	was	also	higher	within	the	1	mi2	section,	although	the	

increase	differed	between	technical	assistance	and	live‐trapping	(2.9	for	1	mi2	areas	

having	had	technical	assistance	prior,	and	2.0	for	1	mi2	areas	having	had	live‐trapping	

prior;	S.E.	=	0.109,	p	<	0.001;	S.E.	=	0.281,	p	=	0.011).			
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(Table	4)	Relative	complaint	hazards	and	associations	with	previous	management	intervention	
Cox	regression	analysis	using	previous	management	response	(yes	or	no)	from	2008‐10	in	Wisconsin	as	
the	predictor	variable	for	hazard	of	a	subsequent	complaint.		Rel.	hazard	is	hazard	relative	to	the	
reference	(no	previous	management	response).		Significance	is	defined	at	α	=	0.05.		Vicinities	having	had	
a	previous	response	are	coded	‘1’;	those	not	are	‘0’.		
	

  Variable	z3	 Mean	 Coefficient	 Rel.	Hazard				 S.E.	 Wald	p	

1	
m
i2
				
	 					Live‐trapping	          

0	 0.957	 0	 1	(reference)	    

1	 0.043	 0.716	 2.045	 0.281	 0.011	
					Technical	assistance	          

0	 0.903	 0	 1	(reference)	    

1	 0.097	 1.073	 2.924	 0.109	 <	0.001**	

9	
m
i2
			
		 					Live‐trapping	          

0	 0.963	 0	 1	(reference)	    

1	 0.037	 0.622	 1.863	 0.208	 <0.01*	
					Technical	assistance	          

0	 0.911	 0	 1	(reference)	    

1	 0.089	 0.691	 1.996	 0.087	 <	0.001**	
 
 

Season	and	hazard	for	subsequent	complaints	were	not	significantly	associated.		

However,	I	did	see	a	tendency	for	season	to	be	associated	with	property‐level‐hazard	

when	WS	responded	with	live‐trapping.		Hazard	for	a	subsequent	complaint	was	nearly	

two‐thirds	less	if	live‐trapping	took	place	after	1	August	(Rel.	hazard	=	0.353,	S.E.	=	

0.592,	p	=	0.078).			

DISCUSSION	

Human‐bear	conflict	mitigation	strategies	fit	into	two	broad	categories.		

Management	actions	may	either	be	reactive	or	proactive.		An	example	of	reactive	

management	includes	translocation,	which	is	the	most	used	method	of	on‐the‐ground	

direct	mitigation	by	Wisconsin	WS.		Technical	assistance,	too,	is	reactive	in	practice.		

Only	when	an	individual	has	had	a	conflict	does	that	person	call	for	assistance.		
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Proactive	management	includes	actions	directed	to	the	public	en	masse,	like	the	

provisioning	of	educational	materials,	as	well	as	one‐on‐one	interactions	such	as	

providing	fencing	for	apiaries	and	calving	areas	in	anticipation	of	conflict.		These	

proactive	measures,	while	practiced	in	Wisconsin,	were	beyond	the	scope	of	this	study.		

My	study	evaluated	the	effects	of	two	reactive	measures:	technical	assistance	delivered	

by	telephone	and	live‐trapping	on	complainants’	properties.	

My	results	support	hypothesis	one.		At	larger	spatial	scales,	hazard	was	higher	

for	a	subsequent	complaint	within	the	same	year	in	the	vicinity	of	an	initial	complaint	

(i.e.,	location	of	management	response).		Hazard	was	consistently	less	and	

spatiotemporal	longevity	greater	at	the	property	level.		My	results	also	support	

hypothesis	two	with	limitations.		There	was	no	appreciable	effect	of	the	number	of	

bears	translocated	on	hazard	at	the	larger	spatial	scales	of	1	mi2	or	9	mi2	(Table	3).		

However,	bear	translocations	from	a	property	were	associated	with	an	increased	

hazard	for	a	subsequent	complaint.		This	may	seem	counterintuitive	since	the	

management	goal	was	to	reduce	hazard	via	translocation.		There	are	several	alternative	

hypotheses	for	why	I	observed	an	increased	hazard.		The	increase	in	hazard	with	each	

translocated	bear	at	the	property	level	may	have	been	an	artifact	of	those	properties	

being	prone	to	conflict	(i.e.,	high	risk	properties).		There	is	also	a	possibility	that	

persons	who	had	live‐trapping	in	the	past	were	more	likely	to	seek	management	

assistance	in	the	future,	and	thus	the	increased	hazard	was	not	due	to	management	

action	directly	but	rather	was	a	byproduct	of	an	individual’s	tendency	to		complain.		The	

increased	hazard	could	also	be	due	in	whole	or	part	to	higher	bear	densities	in	some	
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areas.			

The	percentage	of	locations	not	having	a	subsequent	complaint	after	a	

management	response	within	the	same	year	(i.e.,	maximum	attainable	latency)	are	

presented	in	Table	1.		A	minority	of	PLSS	sections	had	multiple	management	responses	

within	a	year.		However,	if	managers	did	intervene,	the	vicinity	around	the	property	(1	

mi2	and	9	mi2)	was	2	to	3	times’	more	likely	to	have	a	subsequent	complaint.		This	is	not	

surprising,	and	could	indicate	that	locations	requiring	management	intervention	are	

inherently	more	hazardous.		Many	factors	determine	the	risk	of	conflict	at	a	site	(see	

Chapter	II).		Although	I	found	no	statistically	significant	effect	of	season	on	hazard,	I	did	

observe	a	tendency	(p	=	0.078)	for	properties	that	had	live‐traps	placed	after	1	August	

to	have	a	relative	hazard	of	0.35	(or	about	two‐thirds	less)	for	a	subsequent	complaint	

later	that	year	compared	to	properties	prior	to	1	August.		This	is	probably	due	at	least	

in	part	to	complaints	reported	after	to	1	August	having	less	time	to	experience	future	

conflict.		It	might	also	be	due	in	part	to	the	seasonality	of	bear	conflicts	in	Wisconsin,	

with	non‐agricultural	complaints	being	higher	prior	to	1	August	before	field	corn	

reaches	the	palatable	milk	stage	and	before	hard	mast	becomes	available.	

My	results	suggest	that	latency	periods	between	technical	assistance	or	live‐

trapping	and	subsequent	complaints	were	influenced	by	time	and	space.		The	chances	

of	either	of	these	management	responses	preventing	a	future	complaint	within	a	year	

decreased	when	I	increased	the	vicinity	around	a	management	response	(Table	2).		

When	I	examined	individual	properties	only,	the	hazard	for	a	subsequent	complaint	

was	less	(i.e.,	latency	period	was	longer).		When	I	broadened	the	spatial	focus	to	1	mi2	
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or	9	mi2,	I	saw	increased	hazard	(i.e.,	latency	period	was	shorter).		In	essence,	3	of	5	

complaint	locations	did	not	have	a	subsequent	complaint	within	2	months’	time	in	the	9	

mi2	area	surrounding	it;	and,	4	of	5	did	not	have	a	subsequent	complaint	within	2	

months’	time	in	the	surrounding	1	mi2.		Spatiotemporal	effects	were	exemplified	by	my	

finding	that	2	months	after	an	initial	complaint,	more	than	90%	of	properties	did	not	

report	a	subsequent	conflict.		But,	~	20%	of	1	mi2	sections	and	~	40%	of	9	mi2	blocks	

did	(Table	5).		Managers	should	not	expect	efforts	directed	toward	an	individual	

property	to	necessarily	translate	to	fewer	complaints	for	other	properties	in	the	

vicinity.		If	we	want	to	increase	management	effectiveness,	we	must	acknowledge	its	

spatial	limitations.		

(Table	5)	Percentage	of	locations	having	no	subsequent	complaints 
Percent	of	locations	not	having	a	subsequent	complaint	post‐management	response	(technical	assistance	
or	live‐trapping)	from	2008‐10	in	Wisconsin	as	measured	within	the	given	distance	of	the	initial	response	
(vicinity)	and	within	a	certain	time	interval	(t1‐t0)	in	days.			

	
	
	
	
	

	

	

	

	

	

The	majority	(>	90%)	of	individuals	receiving	technical	assistance	or	live‐

trapping	between	2008	and	2010	did	not	report	subsequent	complaints.		It	is	unknown,	

however,	whether	this	was	because	people	rarely	had	more	than	one	conflict	in	any	

Vicinity/	
Response	

1	day	 7	days	 14	days	 30	days	 45	days	 60	days	

Property	/	            

Technical	assistance	 99.8%	 98.6%	 97.2%	 95.9%	 95.5%	 94.9%	
Live‐trapping	 100%	 99.2%	 97.0%	 93.4%	 92.0%	 92.0%	

1	mi2	/	            

Technical	assistance	 98.4%	 93.2%	 88.4%	 83.7%	 81.1%	 79.9%	
Live‐trapping	 99.0%	 95.1%	 91.3%	 84.5%	 82.4%	 82.2%	

9	mi2	/	            

Technical	assistance	 96.1%	 83.6%	 75.2%	 65.9%	 61.7%	 59.4%	
Live‐trapping	 97.1%	 86.3%	 76.5%	 63.8%	 60.0%	 58.4%	
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given	year	or	because	management	actions	prevented	subsequent	conflicts	or	because	

subsequent	conflicts	were	not	reported	(i.e.,	no	one	complained).		In	reality,	it	was	likely	

a	combination	of	factors.		

Technical	assistance	and	live‐trapping	are	not	typically	used	under	the	same	

circumstances.		That	is,	more	severe	complaints	often	warranted	more	direct	

intervention	like	live‐trapping	whereas	less	severe	complaints	did	not.		However,	the	

percentage	of	locations	that	did	not	have	a	subsequent	complaint	afterward	was	nearly	

identical	for	both	types	of	management	response	(Table	5)	and	for	all	three	spatial	

scales.		This	could	indicate	equivocal	effects	and	begs	the	question	of	whether	technical	

assistance	might	be	preferred	by	managers	under	certain	circumstances	due	to	cost‐

effectiveness.					

I	would	recommend	future	research	incorporate	a	randomized	trial	in	which	

properties	were	assigned	a	treatment	in	order	to	directly	compare	the	effects	of	

technical	assistance	to	live‐trapping.		Additionally,	I	recommend	research	be	directed	

towards	understanding	the	impacts	of	perceived	conflict	severity	on	management	

responses.		Finally,	latency	periods	might	be	better	understood	if	a	hazard	analysis	was	

expanded	to	include	areas	not	having	experienced	prior	management	intervention.		

This	would	provide	a	control	measure	that	could	expand	spatiotemporal	

interpretations	beyond	a	property	and	its	immediate	vicinity	(i.e.,	1	mi2	&	9	mi2).		 
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Spatiotemporal	Variation	of	Human	‐	Black	Bear	Conflict	and	
Predicting	Complaints	in	Wisconsin,	USA	

ABSTRACT	

Complaints	about	black	bears	in	Wisconsin	differ	by	the	type	of	complaint	and	between	

seasons.		I	examine	the	associations	of	several	landscape	and	human	demographic	

variables	with	the	probability	of	complaints	(risk)	at	the	Public	Land	Survey	System	

(PLSS)	36	mi2	township	level	between	2008	and	2010.		Using	a	mixed	methods	

approach	that	accommodates	for	an	over‐dispersion	of	zero	count	observations,	I	show	

that	both	the	probability	of	risk	and	the	predicted	level	of	risk	vary	from	March	1st	to	

July	31st	and	August	1st	to	November	30th.		Separating	complaints	by	whether	they	

received	technical	assistance,	direct	control	or	were	agricultural	in	nature	affects	which	

variables	are	the	best	risk	predictors.		Average	annual	hunter	harvest	proved	the	best	

predictor	for	probability	of	risk;	and,	seasonal	homes,	corn,	hunter	harvest	and	low	

level	land	development	proved	the	best	predictors	for	the	number	of	complaints	

recorded.		By	mapping	predicted	risk	levels	and	the	probabilities	of	risk,	I	illustrate	how	

human‐black	bear	conflicts	vary	across	Wisconsin’s	multiple‐use	landscapes	and	

between	seasons.		And,	the	utility	of	such	risk	maps	can	help	to	direct	management	

intervention	to	locations	that	need	it	most.				

	
Keywords	

Conflict,	American	black	bear,	complaints,	nuisance,	Zero	inflated	Poisson,	
	mixed	models,	risk	map	

	
	

INTRODUCTION	
	 Human‐bear	(family	Ursidae)	conflicts	vary	over	both	space	and	time	(i.e.,	

spatiotemporally).		They	vary	from	year	to	year,	season	to	season,	and	place	to	place.		

This	is	not	new	knowledge1;	however,	only	recently	has	this	phenomenon	been	

investigated	empirically.		Factors	contributing	to	spatial	and	temporal	variation	of	

                                                            
1 See (Schorger 1947) for a review of historical frontier black bear encounters. 
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human‐bear	conflicts	have	recently	begun	to	interest	managers	and	scientists.		Human‐

black	bear	(Ursus	americanus)	conflicts	in	Wisconsin	are	no	exception.		My	objective	for	

this	study	was	to	uncover	the	drivers	of	human‐bear	conflict	in	Wisconsin	with	respect	

to	location	and	season.		Using	complaint	data	collected	between	2008	and	2010,	I	create	

multivariate	predictive	models	capable	of	predicting	when	and	where	conflicts	

occurred	in	Wisconsin.		In	addition,	the	models	themselves	help	to	clarify	associations	

between	certain	landscape	and	demographic	variables	and	human‐bear	conflicts.			

Given	the	many	environmental	factors	that	may	influence	human‐bear	conflict,	it	

is	logical	to	assume	that	spatiotemporal	variation	of	human‐bear	conflicts	may	be	

forecasted.		There	is	a	widespread	assumption	among	the	public	and	still	held	by	some	

wildlife	professionals	that	the	recipe	for	human‐carnivore	conflict	is	twofold.		Simply	

put,	an	individual	and	a	carnivore	inhabiting	the	same	place	in	space	and	time	is	a	

supposed	recipe	for	conflict.		This	has	been	shown	not	to	be	the	case,	however.		

Recently	Treves	et	al.	(2011)	showed	that	livestock	depredations	by	wolves	in	

Wisconsin	were	not	uniform	and	could	be	forecasted	with	accuracy.			Further,	several	

studies	have	elucidated	spatiotemporal	factors	as	drivers	or	indicators	of	human‐

carnivore	conflict.		These	factors	are	numerous	and	have	been	associated	with	a	host	of	

carnivore	species	including:		African	lions	(Panthera	leo),	gray	wolves	(Canis	lupus),	

black	and	grizzly	bears	(Ursus	americanus	&	Ursus	arctos	horribilis),	coyotes	(Canis	

latrans),	Amazonian	felids	(Panthera	onca	&	Puma	concolor),	Iberian	wolves	(Canis	

lupus	signatus),	Amur	tigers	(Panthera	tigris	altaica),	and	South	African	carnivores	

(Caracal	caracal,	Canis	mesomelas,	Acinonyx	jubatus,	Hyaena	brunnea,	Panthera	pardus	
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pardus)	(Treves	et	al.	2004,	Bradley	and	Pletscher	2005,	Kapp	2005,	Packer	et	al.	2005,	

Michalski	et	al.	2006,	Wilson	et	al.	2006,	Baruch‐Mordo	et	al.	2008,	Treves	et	al.	2010,	

Goodrich	et	al.	2011,	Lukasik	and	Alexander	2011,	Merkle	et	al.	2011,	Llaneza	et	al.	

2012,	Thorn	et	al.	2012).	

Complaints	as	indicators	of	human‐black	bear	conflict	

Wisconsin	is	an	excellent	state	in	which	to	examine	spatiotemporal	variation	of	

human‐black	bear	conflict.		Complaints	about	negative	interactions	are	reported	by	

citizens	and	recorded	by	US	Department	of	Agriculture	–	Animal	and	Plant	Health	

Inspection	Service,	Wildlife	Services	(WS)	technicians.		It	has	been	rightly	suggested	

that	complaints	do	not,	per	se,	directly	indicate	conflicts	(Poulin	et	al.	2003,	Howe	et	al.	

2010).		Reporting	rates	may	vary	due	to	factors	external	to	conflict.		However,	Poulin	et	

al.	(2003)	found	“general	agreement”	between	nuisance	complaints	and	other	measures	

of	nuisance	bear	activity,	noting	complaints	were	reliable	provided	they	are	

“interpreted	in	light	of	changes	to	reporting	rates.”			

From	2008‐10	there	were	no	appreciable	differences	in	total	complaint	numbers	

reported	by	WS	(µ	=	1,332,	SD	=	45)	(Engstrom	et	al.	2008,	2009,	2010).				In	fact,	there	

has	been	no	appreciable	long‐term	change	in	the	number	of	complaints	over	the	22‐

year	history	of	WS	management	of	Wisconsin’s	nuisance	black	bear	program.		But,	it	

should	be	emphasized	that	while	complaints	may	not	have	decreased	over	the	years,	

neither	have	they	increased.		When	viewed	in	light	of	the	dramatic	rise	of	the	bear	

population,	it	becomes	evident	that	factors	aside	from	the	sheer	number	(and/or	
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density)	of	black	bears	has	contributed	to	human‐bear	conflict	in	Wisconsin	(Appendix,	

Fig	A.1).		I	am	unaware	of	any	direct	way	to	measure	past	reporting	rates	of	human‐

bear	conflict	in	Wisconsin.		I	would	argue	it	isn’t	necessary,	though.		While	the	concern	

of	nuisance	bear	managers	is	human‐bear	conflict,	management	responses	can	only	be	

assured	for	those	individuals	who	report	conflict.		In	practice,	then,	complaints	are	

often	the	closest	thing	managers	have	to	assess	conflict.		And,	while	I	acknowledge	that	

complaints	and	conflicts	may	not	share	a	1:1	relationship,	the	relationship	appears	to	

have	remained	constant	in	Wisconsin.			

Black	bear	nuisance	conflicts	in	Wisconsin	range	in	severity,	and	complaints	by	

themselves	are	not	reliable	indicators	of	severity.				However,	there	are	standard	

operating	procedures	for	mitigating	nuisance	black	bear	conflicts	in	Wisconsin	(WDNR	

2010).		Complaints	may	be	handled	with	technical	assistance	given	over	the	phone	or	

through	some	form	of	direct	control.		Direct	control	methods	include	live‐trapping,	

translocation	and	euthanasia.		If	WS	judges	a	complaint	as	trivial	(e.g.,	a	bear	walking	

through	a	back	yard)	they	mitigate	with	technical	assistance.		There	is	a	good	chance	

that	many	such	encounters	go	unreported.		In	cases	where	the	safety	of	people	or	bears	

is	threatened,	or	in	repeated	offenses	where	significant	bear	damage	is	occurring,	WS	

prefers	direct	control	measures.		In	the	case	of	agricultural	complaints,	a	separate	set	of	

procedures	are	used	(WDNR	2010).		Here,	technical	assistance	is	less‐often	used,	and	

direct	control	methods	are	preferred.		This	is	especially	true	during	the	peak	

agricultural	damage	season	which	occurs	when	field	corn	is	in	its	“milk”	stage.		This	

period	generally	lasts	two	months	and	begins	in	either	early	or	mid‐August.					
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Factors	contributing	to	human‐bear	conflict	

The	factors	contributing	to	human‐bear	conflict	are	myriad,	and	human‐bear	

conflicts	are	thus	complex.		A	large	portion	of	the	complexity	is	a	result	of	the	interplay	

between	human	and	natural	systems.		More	and	more,	a	non‐isolationist	view	of	our	

natural	world	is	becoming	necessary	to	understand	it.		For	better	or	worse,	humans	

have	an	impact	on	earth’s	systems,	and	any	attempts	to	accurately	model	their	

workings	require	that	scientists	recognize	and	assimilate	the	two	systems	in	the	pursuit	

and	transmission	of	scientific	knowledge	(Liu	et	al.	2007).		Human‐bear	conflict	is	no	

exception.					

After	a	thorough	investigation	of	the	literature	on	human‐bear	conflicts,	I	

classified	factors	contributing	to	conflict	into	five	general	categories.		These	factors	are	

both	“natural”	and	anthropogenic,	tangible	and	opaque.		Note	that	some	of	these	factors	

fit	into	multiple	categories	and	that	the	categories	are,	therefore,	not	mutually	exclusive	

(e.g.,	natural	mast	production	varies	seasonally	which	can	alter	foraging	behavior	

(Eagle	and	Pelton	1983).		I	also	want	to	note	that	equivocal	results	have	been	found	

among	studies	on	human‐bear	conflict	(e.g.,	hunter	harvest	has	been	found	to	both	

reduce	and	have	no	effect	on	black‐bear	nuisance	complaints	(Forbes	et	al.	1994,	Treves	

et	al.	2010).		So,	factors	I	present	under	the	following	subheadings	are	presented	as	

plausible	rather	than	prescribed	factors	contributing	to	human‐black	bear	conflict.	
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1.		The	human	factor	

Where	we	live,	how	we	think,	and	what	we	do	are	central	to	human‐bear	

conflict.		Often	these	factors	–	such	as	how	we	feel	–	cannot	easily	be	measured	at	a	

landscape	or	local	level	and	require	social	surveys.		For	example,	Gore	et	al.	(2006)	

showed	that	knowledge	and	perception	of	a	wildlife	agency’s	capacity	to	manage	black	

bears	accounts	for	59%	of	an	individual’s	perception	of	bear‐associated	risk	in	New	

York.		Our	past	experiences	and	awareness	of	bears	may	affect	the	likelihood	for	

conflict,	as	well.		It	has	been	shown	that	persons	who	have	experienced	bear	damage	

have	an	increased	risk	perception	while	those	persons	having	non‐negative	encounters	

have	a	decreased	risk	perception	(Siemer	et	al.	2009).		Our	awareness	of	conflict,	such	

as	increased	public	awareness	due	to	fatal	attacks	in	media	coverage,	may	also	

influence	our	response	to	conflict	(Poulin	et	al.	2003).		How	we	perceive	the	severity	of	

a	conflict	may	also	impact	our	feelings	towards	different	management	responses	(Don	

Carlos	et	al.	2009).			

At	a	group	or	community	level,	other	variables	come	into	play.		The	net	capacity	

for	groups	to	accept	negative	and	positive	impacts	associated	with	wildlife	and	its	

management	is	known,	generally,	as	wildlife	stakeholder	acceptance	capacity	(WSAC)	

(Carpenter	et	al.	2000,	Decker	et	al.	2002).		Our	acceptance	capacity	for	a	species	is	best	

measured	through	social	surveys,	much	as	it	is	for	measuring	individual	perceptions.		

However,	some	of	the	driving	factors	behind	human‐bear	conflicts	can	be	

spatiotemporally	extrapolated.		For	example,	Kretser	et	al.	(2009)	found	that	socio‐

demographic	variables	were	good	indicators	for	spatial	variation	in	perceptions	of	
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human‐black	bear	interactions	in	New	York,	with	a	spatial	clustering	of	like‐minded	

individuals.		Socioeconomic	factors	such	as	age,	education,	sex,	and	community	type	

have	been	shown	to	influence	support	for	black	bear	recovery	(Morzillo	et	al.	2010).		At	

a	fundamental	level,	the	mere	density	of	humans	may	be	a	risk	factor	for	conflict.		For	

example,	significant	relationships	have	been	found	between	peak	summer	tourist	

seasons	and	the	number	of	human‐black	bear	conflicts	(Singer	and	Bratton	1980,	

Landriault	1998).		“Increasing	human	population,	increasing	human	activity	in	bear	

habitat,	[and]	new	generations	of	humans	less‐savvy	to	black	bears”	are	commonly	

cited	by	wildlife	professionals	to	contribute	to	increased	human‐black	bear	conflict	

(Witmer	and	Whittaker	2001).		Unfamiliarity	with	black	bears	is	an	often	cited	factor	

for	conflict,	as	well.		For	example,	Kapp	(2005)	found	that	the	number	of	seasonal	

homes	was	a	significant	predictor	of	nuisance	complaints	in	Wisconsin.		She	

hypothesized	that	it	was	due	in	part	to	persons	being	unfamiliar	with	living	among	

black	bears	(e.g.,	seasonal	residents	and	tourists).						

2.	Habitat	suitability	

The	quality	of	bear	habitat	is	another	factor	important	in	human‐bear	conflict.		

Our	manipulation	of	the	landscape	for	purposes	of	growing	food,	building	homes	and	

traveling	to	work	have	fragmented	the	landscape	and	altered	bear	habitat.		Throughout	

the	contiguous	US,	black	and	grizzly	bears	are	recolonizing	historic	ranges	after	being	

displaced	by	humans	in	previous	decades	(Bader	2000,	Garshelis	and	Hristienko	2006,	

MacFarland	2009).		Our	landscape	alterations	and	bears’	subsequent	range	reclamation	
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has	resulted	in	a	mosaic	of	human	dominated	and	natural	landscapes	that	are	serving	

the	needs	of	both	people	and	bears.			

Perhaps	no	other	feature	serves	to	fragment	the	landscape	as	much	as	roadways.		

And	roads,	it	appears,	have	an	incredible	impact	on	habitat	quality.			Mueller	(2004)	

found	that	sub‐adult	grizzly	bears	in	Alberta	frequented	areas	closer	to	high‐use	roads	

more	often	than	adults,	suggesting	that	dominant	individuals	prefer	areas	further	from	

roadways.		Lewis	and	Rachlow	(2011)	found	a	positive	correlation	between	black	bear	

highway	crossings	and	the	area	of	forested	landscape	and	a	negative	correlation	

between	human	development	and	highway	crossings,	indicating	that	when	bears	cross	

roads	they	prefer	to	do	so	far	from	humans.		And,	in	Shenandoah	National	Park,	both	

male	and	female	bears	were	shown	to	avoid	primary	roads	year	round	(Garner	and	

Vaughan	1989).		Numerous	habitat	suitability	studies	and	models	for	black	bears	

include	road	density	as	an	indicator	(Rogers	and	Allen	1987,	Van	Manen	and	Pelton	

1997,	Vander	Heyden	and	Meslow	1999,	MacFarland	2009)			

Consistently,	research	finds	that	safe	refuge	is	necessary	for	bears	if	they	live	in	

proximity	to	humans.		Recently,	Baruch‐Mordo	(2007)	found	clustering	of	inter‐urban	

black	bear‐human	conflicts	near	high	quality	habitat.		Garner	(1989)	found	black	bears	

consistently	left	Shenandoah	National	Park	(presumably	high	quality	habitat)	to	forage	

in	rural	developed	and	agricultural	areas.		And,	Ordiz	et	al.	(2011)	found	that	

Scandinavian	brown	bears	(Ursus	arctos	arctos)	avoided	human	settlements,	preferring	

more	concealed	bedding	areas	during	seasons	of	increased	human	activity.		A	recent	

investigation	of	human‐black	bear	conflicts	in	Missoula,	Montana,	found	housing	
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density,	distance	to	large	forest	patches	and	distance	to	water	bodies	to	be	significant	

predictors	for	human‐bear	interactions,	all	of	which	are	habitat	quality	indicators	

(Merkle	et	al.	2011).		Mattson	(1990)	notes	bear	populations	that	rely	regularly	on	

human	foods	only	do	so	when	sufficient	amounts	of	quality	refuge	are	near,	and	McLean	

and	Pelton	(1990)	attributed	the	amount	of	“panhandler”	activity	in	Great	Smoky	

Mountains	National	Park	to	habitat	quality.			An	inverse	relationship	between	habitat	

and	home	range	size	for	black	bears	has	also	been	found,	indicating	that	bears	may	

range	farther	in	poorer	habitats,	thus	increasing	the	chances	of	human‐bear	interaction	

(Smith	and	Pelton	1990).			

All	of	the	above	studies	indicate	a	close	relationship	between	habitat	quality	and	

conflict.		It	appears	that	the	poorest	of	habitats	theoretically	have	minimal	conflict	

because	bears	are	few	or	non‐existent.		On	the	other	hand,	the	best	habitats	offer	

smaller	home	ranges	and	more	easily	achieved	seclusion	from	human	development.		

One	may	hypothesize	that	somewhere	in	the	middle	of	the	habitat	quality	spectrum	is	

where	conflicts	are	highest.		Either	small	areas	of	prime	habitat	or	large	areas	of	

mediocre	habitat	that	are	in	proximity	to	human	development	would	be	at	risk	for	

human‐bear	conflict.		I	say	bear	conflict	rather	than	black‐bear	conflict	because	this	

pattern	seems	to	hold	for	other	bear	species	as	well.		Wilson	et	al.	(2005	&	2006)	found	

that	human‐grizzly	conflict	hot‐spots	from	1986‐2001	in	west‐central	Montana	were	

strongly	associated	with	nearness	to	agricultural	attractants	like	sheep	pastures	and	

unfenced	beehives,	as	well	as,	wetland	and	riparian	areas.			And,	Dyck	(2006)	showed	

defense	of	life	and	property	(DLP)	kills	for	polar	bears	varied	seasonally	from	1970‐
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2000	in	Nunavut,	Canada,	with	more	conflicts	occurring	between	late	August	and	early	

September	during	periods	of	peak	open	water	(i.e.,	minimal	pack	ice	and	thus	poorer	

habitat).		

3.	Availability	and	productivity	of	natural	foods	

Natural	foods	are	closely	associated	with	habitat	quality.		For	black	bears,	this	

means	hard	mast	species	such	as	oaks,	hickories	and	beeches	(Quercus	spp.,	Carya	&	

Juglans	spp.,	and	Fagus	spp.)	and	wild	berries	such	as	raspberries,	blackberries	and	

blueberries	(Rubus	spp.	&	Vaccinium	spp.).		Poulin	et	al.	(2003)	found	a	significant	

negative	correlation	between	nuisance	complaints2	and	summer	and	fall	natural	food	

availability	in	Ontario,	and	Landriault	(1998)	noted	higher	nuisance	capture	rates	in	the	

same	region	when	natural	foods	were	scarce.		Poor	natural	food	production	was	

purported	as	a	primary	factor	for	an	historical	record‐high	number	of	nuisance	

complaints	in	Wisconsin	(Stowell	and	Willging	1992).		In	Minnesota,	mast	productivity	

in	late‐summer	and	fall	was	observed	to	be	negatively	correlated	with	nuisance	activity	

(Garshelis	1989).		Also,	in	Northern	Minnesota	sub‐adult	males	may	hasten	their	

dispersal	if	food	availability	is	low	(Rogers	1987).		And,	this	is	a	representative	

demographic	in	human‐black	bear	conflicts	(e.g.,	Treves	et	al.	2010,	Mattson	1990).		

However,	poor	food	productivity	does	not	preclude	bears	to	nuisance	activity.		Noyce	

and	Garshelis	(2011)	found	that	bears	were	more	apt	to	leave	their	home	range	in	late‐

summer	and	fall	if	substantial	food	crops	were	available	outside	of	it.		Also,	bears	

                                                            
2 The authors log‐transformed the complaints to normalize the data due to an unusually high number of 
complaints in 2001.   
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tended	to	remain	within	their	home	ranges	in	times	of	food	scarcity.		In	cases	of	food	

abundance,	then,	black	bears	may	travel	further	increasing	the	likelihood	of	their	

crossing	paths	with	people.		However,	black	bears’	proclivity	to	seek	anthropogenic	

food	sources	is	unlikely	in	such	cases	because	non‐food‐conditioned	black	bears	prefer	

natural	foods	when	available3		(Beeman	and	Pelton	1980,	Costello	and	Sage	1994,	

Thiemann	et	al.	2008).			

4.	Seasonal	variation	

The	discussion	of	food	productivity	transitions	easily	into	the	next	factor,	which	

is,	generally	speaking:		time.		As	I	have	already	stated,	conflicts	are	not	uniform	in	space	

nor	are	they	uniform	in	time.		As	an	obvious	example,	human‐bear	conflicts	

dramatically	drop	during	the	period	of	winter	dormancy,	and	complaints	tend	to	

increase	in	the	Midwest	around	mid‐May,	shortly	after	black	bears	emerge	from	their	

dens	(Garshelis	1989).		Less	obvious	is	the	variability	in	complaints	during	the	summer	

and	fall	months	between	and	within	years.		However,	evidence	suggests	changing	

weather	patterns	may	influence	nuisance	bear	activity.		Recently,	Zack	et	al.	(2003)	

showed	La	Niña	events	were	a	strong	predictor	for	human‐black	bear	encounters	in	

New	Mexico,	and	Baruch‐Mordo	(2007)	found	that	measurements	of	frost,	

precipitation,	and	relative	humidity	were	significant	predictors	for	black	bear‐human	

conflict	hotspots.		Also,	in	Wisconsin,	drought	has	contributed	to	higher	black	bear	

agricultural	damage	complaints	(Stowell	and	Willging	1992).		For	black	bears,	Witmer	

                                                            
3 Note that baiting for black bears may have the opposite effect, with bears frequenting hunter bait stations 
more often during weeks of peak mast production (Johnson 2007). 
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and	Whittaker	(2001)	suggests	both	long‐	and	short‐term	weather	patterns	are	

plausible	drivers	of	bear	complaints.		Garshelis	(1989)	found	snow	depth	during	the	

last	two	weeks	of	March	to	be	strongly	negatively	correlated	with	the	level	of	nuisance	

activity	for	the	upcoming	spring	and	summer.			

Bear	foraging	behavior	also	varies	between	seasons.		Jonker	(1998)	showed	

monthly	variability	in	black	bear	depredation	of	crops,	apiaries,	and	livestock	in	

Massachusetts.		In	addition,	crop	damage	in	Minnesota	occurs	primarily	in	August	and	

September	–	much	as	it	does	in	Wisconsin	(Garshelis	1989,	this	study).		Variation	in	

daily	activity	patterns	vary	by	season,	too.		Black	bears	are	known	to	increase	diurnal	

activity	in	summer	months,	for	example	(Garshelis	and	Pelton	1980).			Other	bear‐

human	conflicts	seem	to	exhibit	similar	temporal	variation.		Wilson	(2005,	2006)	found	

there	was	a	significant	seasonal	(spring,	summer,	fall)	component	to	the	likelihood	for	

grizzly	depredation	events	in	Montana.		In	Greece,	Karamanlidis	et	al.	(2011)	found	that	

agricultural	damage	by	brown	bears	(Ursus	arctos	arctos)	varied	by	season.		Similarly,	

Charoo	et	al.	(2011)	found	agricultural	damage	and	human	attacks	by	Asiatic	black	

bears	(Ursus	thibetanus)	varied	seasonally.			

5.	Black	bear	behavior	and	demographics	

Individual	black	bears	vary	in	their	tendencies	to	damage	property.		This	is	not	

extraordinary,	and	has	been	shown	to	be	true	for	many	large	carnivore	species	(Sacks	

et	al.	1999,	Odden	et	al.	2002,	Treves	and	Naughton‐Treves	2005,	Woodroffe	and	Frank	

2005).		The	tendency	for	black	bears,	specifically,	to	cause	damage	is	likely	due	to	
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learned	behavior4.		For	example,	Mazur	and	Seher	(2008)	found	that	81%	of	black	bear	

cubs	reared	on	anthropogenic	foods	by	food‐conditioned	mothers	continued	the	

behavior	into	adulthood	in	Sequoia	Kings	and	Yosemite	National	Parks.		Studies	have	

shown	that	black	bears	may	alter	their	entrance	into	winter	dens	when	anthropogenic	

or	natural	food	availability	is	high	(Rogers	1987,	Beckmann	and	Berger	2003a,	

Beckmann	and	Berger	2003b).		Beckman	and	Berger	(2003a)	noted	that	urban‐

interface	black	bears	shift	from	diurnal	to	crepuscular	and	nocturnal	foraging	behavior	

when	habituated	to	anthropogenic	foods.		A	large	body	of	literature	exists	to	support	

the	importance	of	learned	behavior	in	mammalian	development	(see	Box	&	Gibson	

1999	for	a	comprehensive	treatment	of	mammalian	social	learning;	see	Maestripieri	&	

Mateo	2009	for	a	comprehensive	treatment	of	mammalian	maternal	effects).		And,	it	has	

been	shown	that	in	black	bears,	there	is	no	clear	genetic	inheritance	or	mother‐

offspring	learning	that	predisposes	an	individual	to	being	food‐conditioned	(Breck	et	al.	

2008).			

Although	studies	vary	in	their	conclusions	on	which	groups	(age	and	sex)	are	

primarily	responsible	for	nuisance	behavior	(Garshelis	1989,	Mattson	1990,	Beckmann	

and	Berger	2003b),	the	theoretical	framework	of	nuisance	bear	demographics	tends	

accurate.		Mattson	(1990)	suggests	that	the	bears	most	likely	to	seek	human	food	

sources	differ	based	upon	their	demographic	(age/sex)	metabolic	requirements	and	

behavioral	(dominance/security)	prerogatives5.			He	suggests	that	the	disproportionate	

representation	of	sub‐adult	males	and	adult	females	with	cubs	that	feed	near	humans	

                                                            
4 See Breck et al. (2008) about the role of genetics and family lineages in black bear nuisance behavior 
5 A copy of Mattson’s framework is presented in the Appendix, Fig. A.4. 
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may	be	a	direct	result	of	these	metabolic	needs	and	behavioral	prerogatives	and	

regulated	in	part	by	the	presence	of	adult	males.	

Treves	et	al.	(2010)	&	Kapp	(2005)	found	age	and	sex	differences	of	nuisance	

bears	in	Wisconsin	to	be	comparable	to	this	framework,	with	64%	of	nuisance	bears	

live‐trapped	from	1995‐2004	being	male,	and	71%	of	those	were	1‐3	years	of	age.		This	

is	not	restricted	to	the	upper	Midwest,	however.		Matthews	et	al.	(2006)	found	that	sub‐

adult	males	were	significantly	closer	to	developed	areas	than	all	other	age‐sex	groups	in	

Yosemite	NP	and	Beeman	and	Pelton	(1976)	found	that	87%	of	translocated	bears	in	

GSM	NP	were	male;	and	while	only	20%	were	juveniles,	100%	of	juveniles	were	male.					

METHODS	

Response	variable	identification			

I	obtained	addresses	of	complainants	from	WS	records	and	entered	them	into	an	

excel	spreadsheet.		Per	USDA	and	UW‐Madison	rules	on	personally	identifiable	

information,	addresses	and	names	were	anonymized.		I	proceeded	to	generalize	

addresses	to	1	mi2	using	the	Public	Land	Survey	System	(PLSS)	section	as	the	spatial	

unit	of	measure.		I	omitted	addresses	that	could	not	be	geo‐located	to	at	least	an	80%	

level	of	confidence	from	my	analysis	(ESRI	2009).		Additionally,	records	that	

documented	subsequent	complaints	at	a	location	in	less	than	a	24‐hour	window	were	

omitted.		I	did	this	to	allow	WS	enough	time	to	adequately	respond	to	a	bear	complaint.		

All	complaint	records	were	subsequently	classified	as	either	agricultural	or	nuisance	

and	spilt	into	two	separate	datasets.		Nuisance	complaints	were	classified	further,	
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separated	by	type	of	management	response.		Nuisance	complaints	fell	into	one	of	two	

groups,	being	classified	as	either	having	received	technical	assistance	or	direct	control.		

After	generalizing	complaint	locations	to	1	mi2	(2.59	km2)	and	classifying	complaints	by	

type	(i.e.,	agricultural,	nuisance	with	technical	assistance,	nuisance	with	direct	control),	

I	aggregated	them	by	PLSS	townships	(n	=	1,699,	µ	=	33.9	mi2,	SD	=	7.2	mi2)6.		The	

township	level	is	more	practical	for	management	purposes,	and	it	more	closely	aligns	

with	black	bear	ecology.		For	example,	female	black	bear	home	ranges	are	estimated	at	

18.3	km2	(3.2–36.5	km2,	n	 = 	19,	SD	 = 	8.3	km2)	for	Northern	Wisconsin	and	

approximately	25	km2	for	bears	in	the	upper	Midwest	(Baker	1983,	Sadeghpour	and	

Ginnett	2011).		A	township	is	much	more	likely,	therefore,	to	contain	an	individual	

bear’s	home	range.		At	a	spatial	unit	of	1	mi2	attributing	multiple	measurements	(e.g.,	a	

20	km2	home	range	would	include	approximately	eight	1	mi2	sections)	to	one	bear’s	

home	range	would	be	unavoidable	and	unadvisable.		Were	complaints	aggregated	at	a	

smaller	scale,	like	the	PLSS	section	(1	mi2)	level,	assumptions	of	independence	may	be	

violated.		For	example,	if	one	bear	generated	many	complaints	or	one	person	

complained	multiple	times	in	a	township,	it	would	give	those	locations	undue	influence.		

So,	to	further	avoid	a	violation	of	independence,	I	used	a	range	of	complaints	to	define	a	

conflict	severity	level	for	each	township	(Table	1).		In	theory,	this	should	diminish	any	

overdue	influence	a	single	bear	generating	multiple	complaints	may	have	had.		In	

addition,	it	should	help	improve	the	models’	predictive	power.					

	
	

                                                            
6 77.0% of townships range between 35 and 37 mi2 
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(Table	1)	Complaints	generalized	to	risk	levels	
Showing	the	number	of	complaints	received	in	Wisconsin	from	2008‐10	at	a	township	level	on	
the	left	and	the	associated	risk	level	assigned	to	each	township	on	the	right.					
	

NUISANCE																Risk	Level	
None.	.	.	.	.	.	.	.	.	.	.	.	.	 	0	
1.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	 	1	
2‐3.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	 	2	
4‐10	.	.	.	.	.	.	.	.	.	.	.	.	.	 	3	
>10	.	.	.	.	.	.	.	.	.	.	.	.	.	.	 	4	

AGRICULTURAL				Risk	Level	
None.	.	.	.	.	.	.	.	.	.	.	.	.	 	0	
1.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	 	1	
2.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	 	2	
≥3	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	 	3	

My	next	step	was	to	include	a	seasonal	component	to	complaints	by	classifying	

them	as	either	having	taken	place	between	March	1st	and	July	31st	(spring	–	early	

summer)	or	August	1st	and	November	30th	(late	summer	–	fall),	similar	to	Noyce	&	

Garshelis’s	(2011)	study	in	Northern	Minnesota.		Wisconsin	black	bear	foraging	

behavior	closely	mirrors	that	of	Northern	Minnesota.		This	was	apparent	when	I	

examined	WS	trapping	data	from	2008	to	2010	(FIGURE	1).		There	was	a	clear	drop	in	

bears	translocated	in	late	July	and	early	August.		The	number	waned	as	the	“nuisance”	

season	came	to	a	close	and	wild	berries	ripened	across	Northern	Wisconsin.		

Additionally,	the	breeding	season	ended	sometime	in	in	mid‐July	(FIGURE	2)	and	family	

groups	are	known	to	have	broken	up	by	the	end	of	June.		Subsequently,	in	late	August	

and	early	September	field	corn	reached	its	peak	“milk”	stage	at	which	time	it	is	most	

palatable	to	black	bears.		Trapping	efforts	to	remove	black	bears	from	farmers’	fields	

increased	dramatically	as	a	result.		The	mean	Julian	date	between	these	two	seasons	is	

the	transitional	window	into	late	summer,	which	was	the	31st	week	of	the	year	or	
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roughly	one	month	past	the	summer	solstice	for	2008‐2010.		I	excluded	winter	months	

(December,	January,	and	February)	due	to	bear	inactivity7.					

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

                                                            
7 There was only one nuisance complaint during this time (Feb. 2010) and two livestock complaints (Jan. 2010 
& Dec. 2008).   
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(Figure	1)	Observed	black	bear	nuisance	behavior	and	annual	bear	ecology		
A	yearly	timeline	delineated	by	month	and	week	showing	the	total	number	of	agricultural	and	nuisance	
complaints	and	bears	live‐trapped	that	were	recorded	from	2008‐10	with	an	overlay	showing	the	life	
story	of	the	black	bear	in	Wisconsin.			
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(Figure	2)	Observed	black	bear	nuisance	behavior	and	the	representative	seasonal	divide		
A	yearly	timeline	showing	the	number	of	agricultural	and	nuisance	complaints	in	Wisconsin	from	2008‐
10	by	month	and	the	total	number	of	black	bears	live‐trapped.		The	division	of	the	data	into		 two	seasons	
is	shown	with	week	31	being	the	division	between	seasonal	assignments	of	the	data.			

	
	

Predictor	Variable	Identification	

After	a	review	of	the	literature	(previous	section)	on	the	factors	that	contribute	

to	human‐black	bear	conflict,	I	identified	the	following	eight	variables	as	candidates	for	

my	analysis:		Mean	annual	hunter	harvest	(No.	bears	harvested	per	TWP),	seasonal	

homes	(No.	seasonal	homes	per	TWP),	mean	annual	corn	crop	cover	(hectares	per	

TWP),	developed	land	cover	(3	categories,	hectares	per	TWP),	oak	(Quercus	spp.)	cover	
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(hectares	per	TWP),	and	a	habitat	suitability	index	(probability	of	occupancy	from	0	to	

1)(MacFarland	2009).		All	variables	were	imported	to	ArcMap	v.	10.0	and	data	

extracted	by	PLSS	townships	using	ArcMap	(ESRI	2011)	and	the	extensions	Hawth’s	

Tools	(Beyer	2004),	and	Spatial	Ecology	(Beyer	2012).					

1:			Hunter	harvest		

Hunter	harvest	is	the	5th	most	cited	management	strategy	to	reduce	human‐

black	bear	conflicts	in	North	America8	(Spencer	et	al.	2007).		Harvesting	black	bears	has	

been	hypothesized	as	a	way	to	directly	reduce	nuisance	complaints	by	Witmer	and	

Whittaker	(2001)	and	by	Forbes	et	al.	(1994).		The	WDNR	Black	Bear	Committee	

regularly	reviews	past	human‐bear	conflicts	when	deliberating	upcoming	annual	

harvest	quotas	(Voyles,	unpublished	data	2010	&	2012).		Further,	Noyce	and	Garshelis	

(1997)	found	that	hunter	success	in	Minnesota	was	inversely	related	to	natural	food	

productivity9.		In	other	words,	higher	hunter	harvest	success	correlated	with	local	food	

stresses;	and	so,	harvest	numbers	may	indirectly	predict	human‐black	bear	conflict.		

While	harvest	success	and	the	number	of	bears	harvested	in	an	area	are	undoubtedly	

linked,	the	measures	are	not	equal.		Since	Wisconsin	hunter	success	is	only	known	for	

large	areas	(bear	management	units),	interpolating	success	to	the	township	scale	would	

                                                            
8 The four more common strategies, in order from most‐common to least are:  site visit, translocation, 
euthanasia, and kill permits (Spencer et al. 2007). 
9 The study also found that the bear population size had no significant effect on hunter success though it can, 
in some cases, be a factor contributing to hunter success (Noyce and Garshelis 1997) 
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be	ill‐advised10.		Therefore,	I	did	not	include	hunter	success	as	one	of	my	candidate	

predictor	variables	and	chose	to	only	use	harvest	outright.	

Bear	hunter	harvest	in	Wisconsin	is	recorded	by	Deer	Management	Unit	(DMU).		

These	units	vary	in	size,	measuring	between	2	km2	and	3,284	km2	with	a	mean	size	of	

1,052	km2	(n	=	138,	SD	=	676	km2).		I	first	calculated	the	mean	annual	harvest	for	each	

DMU	from	2008‐10.		To	standardize	mean	annual	harvest,	I	divided	harvest	for	each	

DMU	by	its	area,	yielding	an	areal	average.		I	proceeded	by	calculating	the	area	

weighted	mean	for	each	township.			

2:		Seasonal	homes	

The	number	of	seasonal	homes	is	a	measure	that	could	be	associated	with	

myriad	factors.		For	one,	it	could	be	associated	with	bear	habitat	quality	and/or	the	

availability	of	natural	foods.		From	an	anthropogenic	standpoint,	the	number	of	

seasonal	homes	could	serve	as	an	estimate	for	the	degree	of	seasonal	recreation.		

Seasonal	homes	might	also	be	indicators	of	rural	areas.		Kapp	(2005)	found	that	the	

number	of	seasonal	homes	was	a	significant	predictor	of	annual	black	bear	complaints	

for	Wisconsin	counties.					

I	used	2010	National	Decennial	Census	data	downloaded	from	the	University	of	

Wisconsin’s	Applied	Population	Laboratory	to	estimate	the	number	of	seasonal	homes	

(UW	Extension	2012).		These	data	are	aggregated	by	census	blocks	which	vary	in	size,	

measuring	between	0.04	km2	and	1,080	km2,	with	an	average	size	of	32.59	km2	(n	=	
                                                            
10 There are four bear management units in Wisconsin: A, B, C & D.  Their sizes are:  A) 15,918 km2; B) 14,854 
km2; C) 97,998 km2; D) 16,471 km2. 

42



4456,	SD	=	73.04	km2).		To	standardize	the	number	of	seasonal	homes,	I	took	the	areal	

average	for	each	township.				

3:		Corn	crop	cover	

Agricultural	cereal	crops	can	be	strong	attractants	for	bears.		In	Wisconsin,	corn	

is	the	most	highly	depredated	grain	crop	(Koele	2008,	2009,	2010).		It	makes	intuitive	

sense	to	use	corn	crop	cover	as	a	predictor	for	agricultural	conflict,	although	it	may	not	

be	as	intuitive	to	use	it	as	a	predictor	for	nuisance	complaints.		It	is	possible,	though,	

that	nuisance	complaints	(i.e.,	non‐agricultural)	are	spatiotemporally	linked	to	crop	

cover.		I	cite	several	sources	above	where	conflicts	are	linked	to	the	nearness	of	

agriculture	lands.		

Corn	crop	cover	was	identified	using	the	USDA	–	National	Agricultural	Statistics	

Service,	Cropland	Data	Layer	(CDL).		Satellite	imagery	was	compiled	annually	for	each	

annual	growing	season	as	a	raster	file	with	a	ground	resolution	of	56	meters	for	2008	

and	2009	and	30	meters	for	2010.		I	summed	cover	estimates	at	the	township	level	for	

each	year	and	then	calculated	an	annual	average	for	each	township.		Corn	classification	

had	producer	accuracies11	of	92.5%,	95%	and	95%	for	2008‐10	respectively.		User	

accuracies12	were	94.4%,	94.6%	and	94.2%	for	2008‐10	respectively.	

	

	

                                                            
11 Producer’s accuracy is 100% minus omission error. 
12 User’s accuracy is 100% minus commission error (i.e., false attribution). 
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4	‐	6:			Developed	land		

I	used	2006	National	Land	Cover	Data	(NLCD)	to	identify	degrees	of	land	

development13.		Initial	NLCD	data	was	compiled	from	satellite	imagery	in	2001.		The	

2001	products	were	later	refined	using	2006	imagery.		There	are	three	classes	of	land	

development:	low,	medium,	and	high	intensity.		The	definitions	as	defined	in	the	NLCD	

metadata	are:	

Low	intensity	“includes	areas	with	a	mixture	of	constructed	materials	and	
vegetation.		Impervious	surfaces	account	for	20‐49	percent	of	total	cover.		
These	areas	most	commonly	include	single‐family	housing	units.”	

Medium	intensity	“includes	areas	with	a	mixture	of	constructed	materials	
and	vegetation.	Impervious	surfaces	account	for	50‐79	percent	of	the	
total	cover.		These	areas	most	commonly	include	single‐family	housing	
units.”	

High	intensity	“includes	highly	developed	areas	where	people	reside	or	
work	in	high	numbers.	Examples	include	apartment	complexes,	row	
houses	and	commercial/industrial.		Impervious	surfaces	account	for	80	
to100	percent	of	the	total	cover.”		(USGS	2011)	

	

The	latest	NLCD	data	date	from	2006,	but	a	regional	class	accuracy	assessment	is	

not	available	for	the	2006	data.			Regional	accuracy	assessments	for	the	previous	2001	

NLCD	are	available,	and	the	method	of	satellite	data	collection	was	very	similar	to	

procedures	performed	in	2001(Wickham	et	al.	2010,	Wickham	et	al.	2013;	TABLE	2).		

Thus,	these	accuracy	estimates	are	assumed	to	be	representative	of	the	2006	data.		

                                                            
13 Official estimates indicate a ≤ 1.0% annual increase in the number of housing units developed in Wisconsin 
between the years of 2006 and 2010 (Wisconsin DOA 2000 & 2010).  	
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Ground	resolution	of	the	2001	and	2006	data	is	30	meters.		I	estimated	land	cover	by	

summing	coverage	per	intensity	level	across	townships.	

(Table	2)	Accuracy	assessment	for	NLCD	data	used	to	model	Wisconsin	bear	complaints	2008‐10	
National	land	cover	data	land	development	classifications	showing	producer’s	(100%	‐	omission	
	 error)	and	user’s	(100%	‐	commission	error)	accuracies.	Accuracies	were	assigned	to	2001	NLCD	
	 data	(Wickham	et	al.	2010).			
	

Accuracy	assessments	for	NLCD	developed	classes	

Class	
Producer’s	Accuracy	

(%)	
User’s	Accuracy	

(%)	
Developed,	low	intensity	 80.1	 87	
Developed,	medium	intensity	 90.5	 88	
Developed,	high	intensity	 98.5	 83	

	

7:			Hard	mast	availability	(Quercus	spp.)	

To	account	for	hard	mast	crops,	I	used	the	WISCLAND	raster	file	produced	by	a	

consortium	of	governmental	and	private	organizations	across	Wisconsin.		I	used	

estimates	for	oak	species	coverage	to	quantify	areas	with	the	potential	to	produce	

acorns	for	black	bears.		WDNR	does	not	maintain	annual	records	of	oak	mast	

productivity.		Thus,	oak	coverage	serves	as	a	rough	approximation	for	this	measure.												

The	WISCLAND	raster	file	identifying	oak	species	was	produced	using	LANDSAT	

Thematic	Mapper	satellite	imagery	taken	between	1991	and	1993.		Although	the	age	of	

this	data	is	>20	years,	the	coverage	estimates	for	most	classes	–	including	oak	coverage	

–	were	accurate	(WDNR	1999),	and	changes	since	this	time	in	forest	assemblages	are	

assumed	to	be	minimal	at	a	township	scale.		Nonetheless,	it	should	be	recognized	that	

the	data	represent	species	compositions	as	they	were	circa	1992.		Ground	resolution	for	
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this	data	is	30	meters.			User’s	accuracy	for	the	oak	classification	was	90%	and	the	

producer’s	accuracy	was	93%.		I	estimated	land	cover	by	summing	oak	coverage	across	

townships.			

8:		Habitat	Suitability	Index	(HSI)	

I	used	an	index	measure	of	habitat	suitability	generated	by	MacFarland	(2009)	

for	the	Upper	Great	Lakes	region.		The	primary	factors	selected	to	estimate	HSI	included	

forest	and	wetland	type,	road	density,	stream	density	and	crop	cover.		Each	township	

was	attributed	with	probability	of	black	bear	occupancy	(0	to	1).		The	HSI	layer	was	

developed	at	the	township	level	and	no	spatial	transformation	was	necessary.		

Sub‐setting	the	data	for	future	validation	

In	order	to	validate	the	final	regression	models,	I	set	aside	20%	of	the	townships	

(i.e.,	340	of	1,699)	to	use	after	model	selection	to	compare	predicted	risk	to	observed	

risk.		I	randomly	chose	which	townships	to	reserve	for	validation.		The	remaining	

townships	were	used	in	the	regression	analyses	using	zero‐inflated	mixed‐effects	

techniques.	

Zero‐Inflated	Mixed‐Effects	Model	(ZIP)		

The	zero‐inflated	Poisson	model	(ZIP)	is	a	mixed‐effects	model	that	better	fits	

data	with	excessive	zeros.		Statistically,	it	is	a	way	to	overcome	over‐dispersion	effects	

of	zeros	(i.e.,	more	zeros	than	would	be	expected	in	a	Poisson	distribution)	and	avoid	

biased	parameter	estimates	(Zuur	2009).		A	central	tenet	of	the	Poisson	distribution	is	
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that	variance	equals	the	mean14.		When	the	deviance	of	the	residuals	is	greater	than	the	

degrees	of	freedom	for	the	residuals	(like	when	there	are	too	many	zeros),	the	

assumption	of	mean‐equals‐variance	is	broken	(Kabacoff	2011).		ZIP	is	commonly	used	

to	account	for	this	violation.	

The	ZIP	model	assumes	that	there	are	two	types	of	zeros.		There	are	those	that	

fit	into	the	normal	distribution	of	observed	counts	(aka,	structural	zero	group),	and	

there	is	another	group	of	zeros	which	could	never	be	anything	but	zero	(aka,	false	zero	

group).		The	regression	model	is	thus	expanded	beyond	the	Poisson	distribution	to	

include	a	logistic	regression.		The	logistic	portion	of	the	model	measures	the	probability	

of	zero	assuming	there	are	two	types	of	zeros.		In	the	instance	of	bear	complaints	per	

township	across	the	state	of	Wisconsin,	there	are	a	very	high	number	of	zeros.		It	is	easy	

to	see	that	there	are	two	types	of	zeros	in	this	case.		There	are	some	townships,	for	

instance,	which	never	received	a	complaint	but	well	could	have.		These	townships	

would	belong	in	the	structural	zero	group.		There	are	other	townships	–	such	as	those	

that	encompass	Lake	Winnebago	or	the	city	of	Kenosha,	for	example	–	that	never	

received	a	complaint	because	there	were	no	resident	bears	in	the	area,	and	thus	could	

never	have	experienced	a	complaint	(with	the	exception	of	the	rare	ambitious	bear).		

Zeros	such	as	these	belong	to	the	false	zero	group.		The	ZIP	model	includes	a	logistic	

model	to	help	differentiate	these	two	types	of	zeros.			

The	probability	distribution	of	a	ZIP	model	is	conditional	on	the	value	of	y.		In	

the	case	of	bear	complaints,	we	are	making	an	assumption	that	the	probability	of	

                                                            
14 λ = E(X) = Var(X) 
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measuring	a	bear	complaint	in	township	i	is	a	combination	of	the	probability	of	a	zero	

being	structural	or	false	“mixed”	with	the	Poisson‐based	probability	of	measuring	a	

complaint.		In	the	end,	the	ZIP	model	produces	a	response	value	that	has	been	adjusted	

to	account	for	the	effects	of	false	zeros.		For	this	study,	the	ZIP	model	estimates	the	

probability	of	measuring	0	complaints	under	a	binomial	distribution	(risk	level	=	0;	

false	or	structural)	mixed	with	the	probability	of	measuring	≥	0	complaints	under	a	

Poisson	distribution	(risk	level	≥	0).			

Prሺ ௜ܻ ൌ 0ሻ ൌ Prሺ݁ݏ݈ܽܨ	ݏ݋ݎ݁ݖሻ ൅ Prሺ1 െ ሻݏ݋ݎ݁ݖ	݁ݏ݈ܽܨ ൈ Prሺܹ݁	݉݁ܽ݁ݎݑݏ	ܽ	݁ݑݎݐ	݋ݎ݁ݖሻ	

Prሺ ௜ܻ ൌ ௜ሻݕ ൌ Prሺ1 െ ሻݏ݋ݎ݁ݖ	݁ݏ݈ܽܨ ൈ Prሺݐ݊ݑ݋ܥ	ݏݏ݁ܿ݋ݎ݌ሻ	

Where	µ	is	the	mean	of	the	positive	counts	and	π	the	probability	of	false	zeros,	the	

probability	functions	of	a	ZIP	are	expressed	as15,		

݂ሺݕ௜ ൌ 0ሻ 							ൌ ௜ߨ ൅ ሺ1 െ	ߨ௜ሻ ൈ ݁ିఓ೔	

݂ሺݕ௜	|	ݕ௜ ൐ 0ሻ ൌ ሺ1 െ ௜ሻߨ ൈ
௬೔ߤ ൈ ݁ିఓ೔

!௜ݕ
	

And	introducing	covariates	to	account	for	the	probability	of	a	false	zero	and	mean	count	

value	yields,			

௜ߨ ൌ
݁௩ାఊభൈ௓೔భା⋯ఊ೜ൈ௓೔೜

1 ൅ ݁௩ାఊభൈ௓೔భା⋯ఊభൈ௓೔೜
	

AND	

μ௜ ൌ ݁ఈାఉభൈ௑೔భା⋯ఉ೜ൈ௑೔೜	

                                                            
15 All expressions are identical to those explained in Zurr (2009)  
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Model	selection	and	validation	

I	checked	each	of	the	previous	eight	predictor	variables	against	each	other	to	

test	for	collinearity.		If	two	predictor	variables	showed	|r|	≥	0.7,	I	kept	the	stronger	

predictor.		The	stronger	predictor	was	determined	via	its	association	with	the	response	

variable.			The	predictor	with	the	higher	|r|	shared	with	the	response	variable	was	

retained.		Those	variables	passing	the	collinearity	test	were	kept	for	further	modeling.			

Using	the	identified	non‐collinear	predictor	variables,	I	proceeded	by	regressing	

each	predictor	against	the	six	risk	response	variables	(spring	–	early	summer	nuisance	

/		technical	asst.;	spring	–	early	summer	nuisance	/	direct	control;	summer	–	late	fall	

nuisance	/	technical	asst.;	summer	–	late	fall	nuisance	/	direct	control;	spring	–	late	

summer	agricultural;	and	summer	–	late	fall	agricultural)	using	statistical	software	R	

3.0.0	(R	Core	Team	2013)	and	packages	‘pscl’	(Zeileis	et	al.	2008)	and	‘lmtest’	(Zeileis	&	

Hothorn	2002).		The	predictors	were	examined	one‐at‐a‐time	beginning	with	the	

logistic	part	of	the	model.		Predictors	were	evaluated	using	a	likelihood	ratio	test	and	

the	model	AIC	values	were	compared	to	the	null.			The	best	predictor	for	each	risk	type	

(i.e.,	most	negative	Δ	AIC)	was	chosen	as	the	initial	predictor	for	the	logistic	portion	of	

the	ZIP	model.		I	subsequently	added	the	other	predictor	variables	one‐at‐a‐time	in	two	

forms	–	once	as	an	additional	predictor	and	once	to	create	an	interaction	term.		I	

compared	each	expanded	model	against	the	previous	model	using	likelihood	ratio	tests.		

If	Δ AIC	≤	‐	2,	the	new	variable	was	retained.		I	continued	to	add	variables	in	additive	

and	interactive	forms	until	the	difference	between	the	expanded	and	the	previous	

model	was	insignificant	(‐2	<	Δ AIC).		This	resulted	in	six	mixed‐effects	models	with	
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predictor(s)	for	the	logistic	portion	and	only	an	intercept	term	for	the	count	portion.		

The	logistic	side	of	the	models	at	this	point	remained	set	and	unchanged.					

Next,	I	added	each	predictor	one‐at‐a‐time	to	the	count	side	of	the	model.		All	of	

the	predictors	re‐entered	the	building	process	at	this	point,	regardless	of	whether	it	

was	included	in	the	logistic	portion	of	the	model.		A	significant	predictor	of	zero	may,	in	

theory,	not	be	a	predictor	for	the	level	or	risk,	or	vice	versa.		The	predictor	leading	to	

the	largest	decrease	in	AIC	was	retained	as	the	initial	predictor	for	the	count	portion	of	

the	model.		I	added	each	remaining	predictor	one‐at‐a‐time	in	two	forms	(additive	and	

interactive	forms).		If	AIC	decreased	by	>	2,	the	new	variable	was	retained.		I	continued	

to	add	variables	until	the	difference	between	the	larger	and	the	previous	models	was	

insignificant	(‐2	<	Δ AIC).			

This	resulted	in	six	ZIP	models,	one	for	each	type	of	risk.		Using	the	techniques	

above,	the	selected	variables	could	either	be	identical	or	different	among	(risk	types)	

and	within	(logistic	and	count)	models.		The	final	variables	selected	for	the	logistic	

portion	of	the	model	predict	the	probability	of	a	false	zero.		The	variables	selected	for	

the	count	portion	of	the	model	predict	the	level	of	risk	(0‐4	for	the	nuisance	sets	and	0‐

3	for	the	agricultural	set;	Table	1).		The	fully	mixed	model	predicts	the	level	of	risk	after	

determining	whether	a	zero	is	a	false	zero.		I	used	the	final	models	to	predict	the	

probability	of	zero	risk	focusing	on	the	logistic	side	of	the	model	first16.			

                                                            
16 Note the model predicts the probability of a false zero (π).  1 – π is therefore the probability of not being a 
false zero, and thus equates to probability of  complaint.   
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I	subsequently	adjusted	the	threshold	value	for	determining	affected	and	

unaffected	townships	minimizing	the	probability	of	producing	false	negatives	(i.e.,	

model	predicts	zero	risk,	but	there	was	observed	risk).		This	is	a	common	alteration	to	

logistic	regression	models	and	results	in	higher	accuracy	than	using	the	default	

threshold	of	0.5	(Stokland	et	al.	2011,	Olson	et	al.	2012).				The	theoretical	framework	of	

risk	mapping	and	the	statistical	methodology	of	this	research	assume	some	risk	is	

unobserved	but	aims	to	illustrate	where	risk	could	potentially	occur	(Zuur	2009,	

Venette	et	al.	2010).		Adjusting	the	threshold	value	allows	us	to	appropriately	interpret	

model	outputs	to	recognize	these	areas.		Statistically,	adjusting	the	threshold	in	this	

manner	decreases	type	II	errors	(i.e.,	false	negatives).		I	assessed	the	accuracy	of	the	six	

logistic	models	by	calculating	the	odds	of	predicting	risk	correctly.		The	entire	model	in	

its	mixed	form	(logistic	and	count)	predicts	a	level	of	risk	as	a	continuous	response	

variable	ranging	upward	of	zero.		I	tested	predicted	risk	against	observed	risk	using	a	

Welch’s	paired	t‐test.		My	last	step	was	to	use	the	previously	removed	validation	set	to	

see	if	the	models	predicted	risk	level	approximate	to	the	observed	risk	level.		I	assessed	

the	logistic	predictions	of	the	model	against	the	validation	set	with	an	odds	ratio	and	

the	predictions	of	the	mixed	model	against	the	validation	set	using	a	Welch’s	paired	t‐

test,	as	well.		

RESULTS	

Out	of	3,595	total	complaint	records	from	2008‐10,	604	(µ	=	201,	SD	=	35,	n	=	3)	

were	identified	as	agricultural,	whereas	2,992	(µ	=	997,	SD	=	19)	were	nuisance	

complaints.		Proportionally,	nuisance	complaints	made	up	83%	of	all	complaints	from	
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2008‐10	(µ	=	83.3,	SD	=	2.6).		185,	or	6.2%,	of	nuisance	complaints	could	not	be	mapped	

and	18,	or	3.0%,	of	agricultural	complaints	could	not	be	mapped	(TABLE	3).		Mapped	

nuisance	complaints	could	be	attributed	to	552	unique	townships	from	2008‐10	(µ	=	

340,	SD	=	21)	and	mapped	agricultural	complaints	to	278	townships	(µ	=	124,	SD	=	11).		

(Table	3)	Summary	of	mapped	black	bear	nuisance	complaints		
Complaints	across	Wisconsin	from	2008‐10	classified	by	type	and	season	and	whether	
the	origination	of	the	complaint	could	or	could	not	be	mapped	to	a	PLSS	1		 mi2	
section.	

	
Mapped	Complaints	
NUISANCE	 2008 2009 2010 All	Years	
Number	of	complaints	 1007 1014 971 2992	
Unmapped	complaints	(removed)	 53 63 69 185	
Mapped	complaints	 954 951 902 2807	
Unknown	season	(removed)	 13 19 22 54	
Winter	season	(removed)	 ‐ ‐ 1 1	
Mapped	complaints	w/	seasonal	info 941 932 879 2752	
AGRICULTURAL	 2008 2009 2010 All	Years	
Number	of	complaints	 217 153 233 603	
Unmapped	complaints	(removed)	 6 6 6 18	
Mapped	complaints	 211 147 227 585	
Unknown	season	(removed)	 40 7 38 85	
Winter	season	(removed)	 1 ‐ 1 2	
Mapped	complaints	w/	seasonal	info 170 140 188 498	

	

Frequency	distributions	of	the	annual	nuisance	and	agricultural	complaints	per	

township	by	risk	type	showed	that	a	minority	of	townships	from	2008‐10	had	≥	1	

reported	complaint	and	needed	only	technical	assistance	between	March	1st	and	July	

31st	(spring	–	early	summer	season)	from	2008‐10	(µ	=252	,	SD	=	28).		Townships	with	

≥	1	complaint	which	needed	only	technical	assistance	was	lower	from	August	1st	to	

November	31st	(late	summer	–	fall	season)	(µ	=	73,	SD	=	19).		Similarly,	comparatively	
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more	townships	reported	≥	1	complaint	and	needed	direct	control	in	the	spring	and	

early	summer	seasons	from	2008‐10	(µ	=	142	,	SD	=	8)	than	during	the	late	summer	and	

fall	seasons	(µ	=	34	,	SD	=	3).				The	annual	average	number	of	townships	receiving	

management	assistance	because	of	agricultural	complaints	from	2008‐10	was	higher	in	

the	late	summer	and	fall	seasons	(µ	=	80,	SD	=	17)	than	during	the	spring	and	early	

summer	seasons	(µ	=	52,	SD	=	2).		From	2008‐10,	83%	of	nuisance	complaints	took	

place	during	the	spring	and	early	summer	season,	while	36%	of	agricultural	complaints	

took	place	during	this	time.		Only	17%	of	nuisance	complaints	took	place	during	the	late	

summer	and	fall	season,	while	64%	of	agricultural	complaints	took	place	during	this	

time	(TABLE	4).			

In	total,	521	affected	townships	(those	receiving	≥	1	complaint	between	2008	

and	2010)	remained	for	the	nuisance	spring	and	early	summer	set;	215	nuisance	late	

summer	and	fall	set;	147	for	the	agricultural	spring	and	early	summer	set;	and	175	

affected	townships	for	the	agricultural	late	summer	and	fall	set.		When	I	examined	all	

affected	townships	by	nuisance	management	response	type	from	2008‐10,	I	found	that	

456	of	521	(87.5%)	affected	townships	received	technical	assistance	during	the	spring	

and	early	summer	seasons	of	2008‐10,	and	282	of	521	(54.1%)	received	direct	control	

during	this	season.		During	the	late	summer	and	fall	seasons,	173	of	215	(80.5%)	of	

affected	townships	received	technical	assistance,	and	87	of	215	(40.5%)	received	direct	

control	(Table	5).	
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(Table	4)	Seasonal	summary	of	black	bear	nuisance	complaints	
Mapped	complaints	in	Wisconsin	between	2008	and	2010	previously	classified	by	type	and	season	at	the	
PLSS	1	mi2	section	level	attributed	to	PLSS	36	mi2	townships.	

	
Complaints	by	season	
NUISANCE	 2008 2009 2010 All	Years	
Spring‐summer	complaints 791 831 664 2286	
Summer‐fall	complaints	 150 101 215 466	
Spring‐summer	only	TWPs	 246 293 202 337	
Summer‐fall	only	TWPs	 28 24 38 31	
SS	&	SF	TWPs	 62 51 77 184	
Total	SS	TWPs			 308 344 279 521	
Total	SF	TWPs		 90 75 115 215	
AGRICULTURAL	 2008 2009 2010 All	Years	
Spring‐summer	complaints 60 62 56 178	
Summer‐fall	complaints	 110 78 132 320	
Spring‐summer	only	TWPs	 39 49 39 103	
Summer‐fall	only	TWPs	 69 57 86 131	
SS	&	SF	TWPs	 15 0 13 44	
Total	SS	TWPs	(nAG_SS)		 54 49 52 147	
Total	SF	TWPs	(nAG_SF)	 84 57 99 175	

	
	

(Table	5)	Management	response	summary	of	black	bear	nuisance	complaints			
Nuisance	complaints	from	2008	to	2010	in	Wisconsin	distinguished	by	management	response	(technical	
assistance	or	direct	control)	and	classified	by	season	and	their	subsequent	attribution	to	PLSS	36	mi2	
townships.	

	
Nuisance	complaints	by	management	response	
COMPLAINTS	 2008 2009 2010 All	Years	
Spring‐summer	complaints	 791 831 664 2286	
Technical	assistance	 561 587 451 1599	
Direct	control	 230 244 213 687	
Summer‐fall	complaints	 150 101 215 466	
Technical	assistance	 106 61 163 330	
Direct	control	 44 40 52 136	
TOWNSHIPS	(TWPs)	 2008 2009 2010 All	Years	
Spring‐summer	TWPs		 308 344 279 521	
Technical	assistance	(nTA_SS) 255 285 216 456	
Direct	control	(nDC_SS)	 137 153 135 282	
Summer‐fall	TWPs		 90 75 115 215	
Technical	assistance	(nTA_SF) 73 49 96 173	
Direct	control	(nDC_SF)	 31 33 39 87	

54



	 The	three	levels	of	land	development	proved	to	be	highly	correlated	and	

exceeded	my	threshold	of	|r|	<	0.7.	So,	I	removed	two	of	the	candidate	variables	–	

medium	level	land	development	and	high	level	land	development.		The	predictor	I	

retained	was	low	development.		It	had	strongest	association	with	risk	level	for	every	

type	of	complaint.	.		A	correlation	matrix	is	presented	in	Appendix,	Fig.	A.2.		Habitat	

suitability	and	harvest	proved	to	be	highly	collinear,	but	did	not	exceed	my	threshold	of	

|r|	>	0.7	(r	=	0.649).			

	 After	using	likelihood	ratio	tests	to	test	each	predictor	against	the	null	for	the	

logistic	portion	of	the	ZIP	models,	mean	annual	hunter	harvest	proved	to	be	the	best	

single	predictor	for	the	logistic	model	for	all	risk	types,	having	had	a	positive	

association	with	risk	for	all	risk	types	and	seasons.		Once	the	initial	logistic	predictor	

had	been	chosen,	I	added	variables	beginning	with	the	logistic	portion	and	proceeding	

to	the	count	portion	(TABLE	6).			

(Table	6)	Risk	model	building	process	and	validity	of	variable	selection	
Showing	the	model	selection	process	building	up	from	a	null	model	with	zero	predictors.		The	left	side	of	
the	model	corresponds	to	the	Poisson	distributed	count	portion	of	the	mixed	ZIP	model,	and	the	right	
side	corresponds	to	the	binomially	distributed	logistic	portion	of	the	mixed	ZIP	model.		Variables	were	
retained	if	Δ	AIC	≤	‐2.			
	
Mixed	model	=	count	|	logistic	

Spring	‐	Early	Summer	Technical	Assistance	 df	 AIC	 Δ	AIC	 Likelihood	ratio	test	

Null	 2	 2586.05	 0	 χ2	 df,	p	

1	|	harvest	 3	 2330.78	 ‐255.27	 275.3	 1,	p	<	.0001***	

1	|	harvest	X	ldev	 3	 2239.82	 ‐346.23	 91.0	 0,	p	<	.0001***	

1	|	harvest	X	ldev	+	occ	 4	 2182.80	 ‐403.25	 59.0	 1,	p	<	.0001***	

1	|	harvest	X	ldev	+	occ	+	corn	 5	 2165.13	 ‐420.92	 19.7	 1,	p	<	.0001***	

1	|	harvest	X	ldev	+	occ	+	corn	+	seashome	 6	 2158.66	 ‐427.4	 8.5	 1,	p	=	.0036**	

seashome	|	harvest	X	ldev	+	occ	+	corn	+	seashome	 7	 2133.10	 ‐452.96	 27.6	 1,	p	<	.0001***	

seashome	+	corn	|	harvest	X	ldev	+	occ	+	corn	+	seashome	 8	 2128.60	 ‐457.46	 6.5	 1,	p	=	.0108*	
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Late	Summer	‐Fall	Technical	Assistance	 df	 AIC	 Δ	AIC	 Likelihood	ratio	test	

Null	 2	 1167.46	 0	 χ2	 df,	p	

1	|	harvest	 3	 1127.48	 ‐39.982	 42.0	 1,	p	<	.0001***	

1	|	harvest	X	ldev	 3	 1056.31	 ‐111.15	 71.2	 0,	p	<	.0001***	

1	|	harvest	X	ldev	+	occ	 4	 1043.50	 ‐123.96	 14.8	 1,	p	<	.0001***	

seashome	|	harvest	X	ldev	+	occ	 5	 1030.65	 ‐136.81	 14.9	 1,	p	<	.0001***	

seashome	+	harvest	|	harvest	X	ldev	+	occ	 6	 1021.14	 ‐146.32	 11.5	 1,	p	<	.0001***	

seashome	+	harvest	+	corn	|	harvest	X	ldev	+	occ	 7	 1009.43	 ‐158.03	 13.7	 1,	p	=	.0002***	

seashome	+	harvest	+	corn	+	oak	|	harvest	X	ldev	+	occ	 8	 1002.36	 ‐165.10	 9.1	 1,	p	=	.0026**	

Spring	‐	Early	Summer	Direct	Control	 df	 AIC	 Δ	AIC	 Likelihood	ratio	test	

Null	 2	 1801.18	 0	 χ2	 df,	p	

1	|	harvest		 3	 1523.99	 ‐277.2	 279.2	 1,	p	<	.0001***	

1	|	harvest	X	seashome	 3	 1487.59	 ‐313.6	 36.4	 0,	p	<	.0001***	

1	|	harvest	X	seashome	+	corn		 4	 1473.52	 ‐327.67	 16.1	 1,	p	<	.0001***	

1	|	harvest	X	seashome	+	corn	+	occ		 5	 1464.75	 ‐336.43	 10.8	 1,	p	=	.0010**	

ldev	|	harvest	X	seashome	+	corn	+	occ		 6	 1448.30	 ‐352.89	 18.5	 1,	p	<	.0001***	

ldev	X	harvest	|	harvest	X	seashome	+	corn	+	occ		 6	 1435.94	 ‐365.24	 722.2	 0,	p	<	.0001***	

Late	Summer	‐	Fall	Direct	Control	 df	 AIC	 Δ	AIC	 Likelihood	ratio	test	

Null	 2	 694.72	 0	 χ2	 df,	p	

1	|	harvest	 3	 630.58	 ‐64.142	 66.1	 1,	p	<	.0001***	

1	|	harvest	X	seashome	 3	 606.58	 ‐88.138	 24.0	 1,	p	<	.0001***	

1	|	harvest	X	seashome	+	occ	 4	 598.04	 ‐96.676	 10.5	 1,	p	=	.0012**	

corn	|	harvest	X	seashome	+	occ	 5	 591.00	 ‐103.71	 9.0	 1,	p	=	.0026**	

Spring	‐	Early	Summer	Agricultural	 df	 AIC	 Δ	AIC	 Likelihood	ratio	test	

Null	 2	 972.27	 0	 χ2	 df,	p	

1	|	harvest	 3	 917.42	 ‐54.852	 56.9	 1,	p	<	.0001***	

1	|	harvest	X	ldev	 3	 895.75	 ‐76.524	 21.7	 1,	p	<	.0001***	

corn	|	harvest	X	ldev	 4	 891.73	 ‐80.541	 534.2	 1,	p	<	.0001***	

Late	Summer	‐	Fall	Agricultural	 df	 AIC	 Δ	AIC	 Likelihood	ratio	test	

Null	 2	 1172.13	 0	 χ2	 df,	p	

1	|	harvest	 3	 1079.76	 ‐92.371	 94.4	 1,	p	<	.0001***	

1	|	harvest	X	ldev	 3	 1063.75	 ‐108.38	 16.0	 1,	p	<	.0001***	

1	|	harvest	X	ldev	+	occ	 4	 1044.20	 ‐127.93	 21.5	 1,	p	<	.0001***	

ldev	|	harvest	X	ldev	+	occ	 5	 1033.74	 ‐138.39	 12.5	 1,	p	<	.0001***	

ldev	X	occ	|	harvest	X	ldev	+	occ	 5	 1029.23	 ‐142.9	 4.5	 1,	p	<	.0001***	

	
***	indicates	significance	at	the	α	=	0.0001	level	
		**	indicates	significance	at	the	α	=	0.0050	level		
				*	indicates	significance	at	the	α	=	0.0200	level	
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The	‘R’	output	(abbreviated)	for	AIC	and	likelihood	ratio	tests	are	provided	in	

the	appendix	along	with	model	coefficients	and	significance.		All	regression	terms	for	all	

model	components	were	significant	at	the	α	=	0.05	level.		All	likelihood	ratio	tests	

comparing	models	were	significant	at	the	α	=	0.02	level	(Table	6).		For	the	logistic	

models,	an	interaction	between	harvest	and	low	level	development	was	the	best	term	to	

predict	technical	assistance	regardless	of	season;	the	interaction	between	harvest	and	

seasonal	homes	was	the	best	term	to	predict	direct	control	regardless	of	season;	and,	

the	interaction	between	harvest	and	low	level	development	was	the	best	term	to	

predict	direct	control	regardless	of	season.		For	all	of	the	logistic	models,	the	harvest	

interaction	terms	had	a	net	positive	correlation	with	risk	(i.e.,	negative	correlation	with	

false	zeros).			

For	the	count	model,	seasonal	homes	proved	the	best	single	predictor	for	the	

level	of	risk	for	technical	assistance,	having	a	positive	correlation	with	risk.		Low	level	

land	development	was	the	single	best	predictor	for	spring	–	early	summer	direct	

control	and	late	summer	–	fall	agricultural	risk.			The	interaction	between	low	

development	and	harvest	had	a	net	positive	association	with	spring	–	early	summer	

direct	control	risk.		The	interaction	between	low	development	and	habitat	suitability	

had	a	net	negative	association	with	late	summer	–	fall	agricultural	risk.		Corn	was	the	

only	significant	predictor	for	the	risk	of	late	summer	–	fall	direct	control	and	spring	and	

summer	agricultural	risk17.			

                                                            
17 Note that corn would be an indicator of agricultural lands (fields) in this case.  Corn would not be palatable 
to bears in the spring in early summer months. 
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	 Using	the	final	logistic	models,	I	tested	the	predicted	risk	against	the	observed	

risk	to	assess	how	well	they	fit	the	data	(excluding	the	validation	set).		Using	only	the	

logistic	portion	of	the	models	and	an	adjusted	threshold	for	distinguishing	between	

affected	and	unaffected	sites,	each	model	was	able	to	identify	risk	with	high	accuracy.		

Odds	ratios	for	the	models,	which	assess	the	ratio	of	correct	predictions	to	false	

predictions	yielded	ratios	of	11.7	(95%	CI	=	8.7	to	16.0;	p	<	0.01)	for	spring	and	early	

summer	technical	assistance;	9.0	(95%	CI	=	4.9	to	16.5;	p	<	0.01)		for	late	summer	and	

fall	technical	assistance;	19.4	(95%	CI	=	12.8	to	29.4;	p	<	0.01)	for	spring	and	early	

summer	direct	control;	36.9	(95%	CI	=	5.1	to	266.2;	p	<	0.01)		for	late	summer	and	fall	

direct	control;	7.3	(95%	CI	=	3.9	to	13.6;	p	<	0.01)	for	spring	and	early	summer	

agricultural;	and,	7.9	(95%	CI	=	4.8	to	12.8;	p	<	0.01)		for	late	summer	and	fall	

agricultural.		Relatively	speaking,	direct	control	models	performed	most	accurate,	

technical	assistance	second‐most,	and	agricultural	third‐most.	

	 I	tested	the	accuracy	of	the	count	models	at	identifying	the	correct	level	of	risk	

by	performing	Welch’s	paired	t‐tests	between	the	predicted	risk	and	the	observed	risk	

level	for	each	type	of	risk.		These	tests	showed	all	models	predicted	risk	levels	that	were	

not	significantly	different	from	what	was	observed	(spring	–	early	summer	technical	

assistance:	t	=	‐	0.1236,	p	=	0.9016;	late	summer	–	fall	technical	assistance:	t	=	0.0079,	p	

=	0.99;	spring	–	early	summer	direct	control	t	=	0.3590,	p	=	0.72;	late	summer	–	fall	

direct	control	t	=	0.0458,	p	=	0.96;	spring	–	early	summer	agricultural	t	=	0.0174	p	=	

0.99;	late	summer	–	fall	agricultural	t	=	0.0633,	p	=	0.95).	Likely	due	to	the	large	number	

of	zeros	in	each	sample,	the	predicted	risk	level	was	almost	always	less	than	observed	
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risk	level	(83%	±	13	of	affected	townships	have	risk	that	is	predicted	lower	than	the	

observed	risk,	while	1%	±	2	were	predicted	higher).			

Using	the	risk	models	for	the	validation	set	yielded	similar	results.		The	odds	

ratios	for	the	logistic	model	yielded	ratios	of	21.0	(95%	CI	=	10.0	to	44.1;	p	<	0.01)	for	

spring	and	early	summer	technical	assistance;	36.1	(95%	CI	=	4.9	to	268.7,	p	<	0.01)	for	

late	summer	and	fall	technical	assistance;	4.8	(95%	CI	=	0.28	to	81.2;	p	=	0.28)	for	

spring	and	early	summer	direct	control;	17.4	(95%	CI	=	2.2	to	137.7;	p	<	0.01)	for	late	

summer	and	fall	direct	control;	39.2	(95%	CI	=	5.2	to	294.5;	p	<	0.01)	for	spring	and	

early	summer	agricultural;	and,	8.1	(95%	CI	=	2.8	to	23.3;	p	<	0.01)	for	late	summer	and	

fall	agricultural.		Relatively	speaking,	the	spring	and	early	summer	agricultural	model	

performed	best	followed	by		late	summer	and	fall	technical	assistance,	spring	and	early	

summer	technical	assistance,	late	summer	and	fall	direct	control,	and	late	summer	and	

fall	agricultural.		The	spring	and	early	summer	model	produced	an	odds	ratio	that	with	

95%	confidence	intervals	did	not	cross	zero,	however,	the	test	of	this	ratio	proved	

insignificant.			

A	Welch’s	paired	t‐test	showed	no	significant	difference	between	the	validation	

set	predictions	and	observations	(spring	–	early	summer	technical	assistance:	t	=	‐	

0.1733,	p	=	0.86;	late	summer	–	fall	technical	assistance:	t	=	0.0008,	p	=	0.99;	spring	–	

early	summer	direct	control	t	=	0.0000,	p	=	0.99;	late	summer	–	fall	direct	control	t	=	

0.0954,	p	=	0.92;	spring	–	early	summer	agricultural	t	=	‐	0.0183	p	=	0.99;	late	summer	–	

fall	agricultural	t	=	0.415,	p	=	0.97).		The	340	validation	townships	also	had	many	zeros,	
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so	risk	level	was	consistently	under‐predicted	(86%	±	2	of	affected	townships	have	risk	

that	is	predicted	lower	than	the	observed	risk,	while	1%	±	2	were	predicted	higher).			

Mapping	using	models	

	 While	I	suggest	that	Wisconsin’s	human‐black	bear	conflicts	are	not	uniform	in	

space	or	time,	presenting	complaint	information	in	an	interpretable	form	is	key	to	

understanding	spatiotemporal	relationships.		Tables	and	graphs	are	informative	but	

limit	our	ability	to	quickly	assess	and	interpret	data	spatially.		In	addition	to	the	tables	

above,	I	now	present	maps	generated	using	my	validated	models.		I	elucidate	

connections	between	the	data	presented	above	in	tabular	form	with	the	data	presented	

in	these	maps.			

It	is	important	to	note	the	strengths	and	limitations	of	the	models	I	generated	

before	proceeding.		First,	there	is	general	agreement	between	the	model	risk	sets	(using	

data	from	1,359	randomly	chosen	townships)	and	the	validation	risk	sets	(data	

withheld	from	340	townships,	or	20%	of	the	total	1,699).		Second,	the	predictors	used	

in	the	mixed	regression	models	were	all	significant	at	the	α	=	0.05	level.		And,	all	final	

full	models	were	significantly	better	at	predicting	risk	than	in	their	reduced	forms.		

Third,	the	logistic	portions	of	the	models	showed	the	odds	of	making	correct	

predictions	about	whether	or	not	a	township	was	at	risk	(1)	or	not	(0)	and	were	highly	

significant	save	for	the	spring	and	early	summer	direct	control	validation	set	

(Limitation	1).		Fourth,	although	Welch’s	paired	t‐tests	showed	no	significant	difference	

between	predicted	risk	level	and	observed	risk	level	(for	any	risk	type),	the	high	
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number	of	zero	observations	must	be	considered.		In	short,	the	ability	to	accurately	

predict	the	level	of	risk	was	limited	by	this	high	number	of	zeros.		Predicted	risk	levels	

were	often	less	than	observed	risk	levels	(Limitation	2).		Relatively	speaking,	the	

models	show	proper	delineation	of	predicted	risk	levels	and	align	with	observed	risk	

levels.		In	other	words,	while	risk	level	was	consistently	under‐predicted	due	to	the	high	

number	of	zeros,	the	levels	–	when	relativized	–	appear	accurate.		This	becomes	evident	

when	I	compare	the	observed	spring	and	early	summer	technical	assistance	risk	levels	

(Map	A)	to	the	predicted	risk	levels	before	and	after	being	relativized	(i.e.,	rescaled)	

according	to	their	deviations	from	mean	predicted	risk	level	(Maps	B	&	C)18.			

	

	

	

	

	

	

	

	

	

                                                            
18 I present only spring and early summer technical assistance risk as a case‐in‐point.  Other risk levels mirror 
the relationship depicted in Maps B and C.   
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Spring	&	Early	Summer	Technical	Assistance	(Maps	A	–	E)	
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	 While	Map	C	appears	to	be	a	more	complete	picture	of	Map	A,	I	would	caution	

using	my	models	to	predict	risk	level	without	first	verifying	the	models	using	other	data	

(i.e.,	model	verification).		By	using	data	obtained	from	other	years	(e.g.,	2011	to	2013)	

one	could	see	if	relativizing	risk	levels	post‐prediction	consistently	produced	results	

consistent	with	observed	risk	levels.		Since	the	logistic	portion	of	the	mixed	models	

proved	consistently	accurate	across	the	board,	I	would	advise	they	serve	as	the	models	

on	which	to	base	interim	interpretations	(see	Maps	K	–	O).		The	following	two	maps	

show	the	discrepancy	between	observed	risk	level	and	predicted	risk	levels.		The	first	

discrepancy	map	(Map	D)	was	created	by	taking	observed	risk	level	minus	predicted	

risk	level.		The	second	(Map	E)	was	created	by	taking	observed	risk	level	minus	the	

relativized	predicted	risk	level.		Under‐predicting	risk	level	is	minimized	(i.e.,	false	

negatives	are	reduced)	when	I	use	relativized	risk	level.		This	increases	the	utility	of	the	

second	map	(Map	E)	and	the	model	because	they	become	more	useful	for	forecasting	

purposes	and	less	likely	to	overlook	risky	areas	(refer	to	pages	46‐7	of	this	document).		

The	darker	shade	of	blue	a	township	is,	the	greater	the	positive	difference	between	

observed	and	predicted	risk.		This	means	that	the	model	predicted	the	area	to	have	a	

lesser	risk	level	than	was	observed	from	2008‐10.		The	darker	shade	of	red	a	township	

is,	the	greater	the	negative	difference	between	observed	and	predicted	risk.		This	means	

the	model	predicted	risk	in	an	area	to	be	higher	than	was	observed	from	2008‐10.			
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	 The	following	series	of	maps	depict	risk	in	three	forms.		The	first	map	of	each	set	

(F.1‐J.1)	in	the	series	depicts	the	observed	risk	level	per	township	from	2008‐10	by	risk	

type.		The	second	map	for	each	set	(F.2	–	J.2)	depicts	the	predicted	risk	level	relativized	

by	the	predicted	risk’s	deviation	from	the	mean.		And	finally,	the	third	map	for	each	set	

shows	the	degree	of	difference	between	the	relativized	predicted	risk	level	and	

observed	risk	level	(F.3	–	J.3).		The	discrepancy	maps	should	be	interpreted	with	care	

and	not	without	consulting	the	first	and	second	maps	in	each	set	and	the	corresponding	

probability	map	(Maps	K	–	O).		Maps	A,	C	&	E	depicting	spring	and	early	summer	

technical	assistance	risk	levels	are	identical	to	the	series	of	maps	that	follow.			
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Late	Summer	&	Fall	Technical	Assistance	(Maps	F.1	–	F.3)		
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Spring	&	Early	Summer	Direct	Control	(Maps	G.1	–	G.3)	
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Late	Summer	&	Fall	Direct	Control	(Maps	H.1	–	H.3)	
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Spring	&	Early	Summer	Agricultural	(Maps	I.1	–	I.3)		
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Late	Summer	&	Fall	Agricultural	(Maps	J.1	–	J.3)	
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	 This	final	series	of	maps	(K	–	O)	depict	the	probability	of	risk	on	a	scale	of	0‐1	for	

each	risk	type	from	2008‐10.		The	probability	of	risk	was	determined	using	the	logistic	

portion	of	the	mixed	models.		The	reader	may	compare	the	predicted	risk	to	observed	

risk	by	comparing	the	maps	that	follow	to	the	maps	above	(A,	F.1	–	J.1)	which	depict	

observed	risk	level	to	make	a	visual	comparison.		The	reader	should	see	that	risk	

appears	more	widely	spread	in	the	following	probability	maps.		This	is	fine.		The	maps	

that	follow	do	not	depict	where	complaints	took	place,	but	rather	where	they	are	likely	

to	take	place	given	the	parameters	of	each	model.		These	maps	show	which	townships	

were	most	likely	to	have	had	a	nuisance	black	bear	complaint	sometime	between	2008	

and	2010.			
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Technical	Assistance	Spring	&	Early	Summer	
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Technical	Assistance	Late	Summer	&	Fall	
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Direct	Control	Spring	&	Early	Summer	
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Direct	Control	Late	Summer	&	Fall	
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Agricultural	Spring	&	Early	Summer	
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Agricultural	Late	Summer	&	Fall	
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DISCUSSION	

	 Not	surprisingly,	there	were	similarities	and	differences	among	the	six	models	

predicting	risk	for	bear	complaints	across	Wisconsin	from	2008	to	2010.		For	the	

logistic	portion	of	the	models,	each	conflict	type	had	the	same	strongest	predictors	

(interaction	terms)	regardless	of	season.		For	technical	assistance	and	agricultural	

complaint	risks,	the	term	was	hunter	harvest	multiplied	with	the	area	of	low	level	land	

development	(landscapes	dominated	by	single‐family	households	and	impervious	

surfaces	covering	between	20%	and	49%	of	the	total	land	area).		And,	for	direct	control	

risk,	the	term	was	harvest	multiplied	with	seasonal	homes.		For	all	risk	types	and	

seasons,	the	coefficient	was	negative	and	thus	increased	the	probability	of	a	complaint	

(decreased	the	probability	of	a	false	zero,	π).		Neither	land	development	or	hunter	

harvest	or	habitat	suitability	varied	substantially	from	2008	to	2010	at	a	state‐wide	

level	(Wisconsin	DOA	2000	&	2010,	Dhuey	et	al.	2008,	2009,	2010).			

	 Harvest	could	be	a	reflection	of	the	size	or	density	of	the	local	bear	population19,	

which	is	also	supported	by	the	fact	that	occupancy	(i.e.,	habitat	suitability	index)	was	

present	in	5	of	the	6	logistic	risk	models.		In	4	of	these,	it	was	the	second	strongest	

predictor.		In	addition,	activities	surrounding	the	fall	bear	harvest	in	Wisconsin	occur	

throughout	much	of	the	summer	months.		For	example,	training	bear	hounds	is	

permitted	throughout	the	state	from	July	1st	through	August	31st.		Also,	baits	may	be	

placed	from	mid‐April	through	the	general	harvest	in	September	and	early	October	

                                                            
19 Examining the correlation between complaints and hunter harvest from 1990 to 2011, I calculated a 
correlation coefficient  of 0.82 (n = 21, p < 0.001; Voyles 2012).   

84



(WDNR	2008,	2009,	2010).		It	is	quite	possible	that	these	activities	altered	bear	habits	

and	thus	had	an	impact	on	complaint	risk	for	the	seasons	before	and	after	1	August.		

And,	the	effects	of	bear	harvest	likely	extend	beyond	the	general	fall	harvest.		For	

example,	fall	harvest	has	been	shown	to	correlate	positively	with	future	bear	

population	estimates	(Voyles	2012);	and,	bear	harvest	at	the	county	level	has	been	

shown	to	be	positively	correlated	with	the	number	of	complaints	in	subsequent	years	

(Kapp	2005).		Finally,	the	bear	harvest	structure	in	Wisconsin	has	been	shown	to	affect	

bear	which	demographics	are	most	at	risk	(Malcom	2010).			

	 The	probability	maps	for	technical	assistance	and	agricultural	complaints	differ	

little	between	the	spring	and	early	summer	(Maps	K	&	O)	and	late	summer	and	fall	

(Map	L	&	P)	seasons.		This	is	likely	at	least	partially	due	to	the	fact	that	harvest,	land	

development	and	habitat	suitability	remained	constant.		Seasonal	homes,	however,	

while	likely	remaining	in	place	from	2008	to	2010,	were	probably	occupied	at	higher	

capacities	during	the	summer	holidays	which	occurred	between	the	end	of	May	

(Memorial	Day	weekend)	and	July	4th	(Independence	Day).		This	could	help	explain	why	

spring	and	early	summer	direct	control	risk	was	relatively	higher	than	during	the	late	

summer	and	fall	seasons	(Maps	M	&	N).					

	 Interpreting	the	risk	for	a	complaint	beyond	probability	required	the	entire	

mixed‐effect	ZIP	model.		These	revealed	further	insight	into	when,	where	and	possibly	

why	the	level	of	risk	(i.e.,	the	number	of	complaints	reported)	varied	among	risk	types	

and	between	seasons.		One	benefit	of	the	mixed	ZIP	model	is	that	predictors	used	to	

construct	the	logistic	model	need	not	have	been	the	same	for	the	Poisson	distributed	
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count	model.		The	variables	introduced	into	the	count	portion	of	the	models	indicate	

they	had	an	influence	on	risk	level,	or	in	other	words,	helped	explain	the	difference	

between	few	and	many	complaints.			

	 The	discrepancies	between	observed	and	predicted	risk	levels	were	not	

consistent,	however.		After	relativizing	predicted	risk	levels	(which	were	biased	low),	

the	problem	of	underestimating	risk	was	minimized.		Still,	there	were	townships	that	

were	observed	to	have	had	more	complaints	than	predicted.		This	could	mean	that	the	

years	2008‐2010	were	anomalous	for	those	locations,	and	that	they	experienced	an	

unusually	high	number	of	complaints.		It	could	also	indicate	that	the	models	lacked	one	

or	more	variables	that	affected	risk	levels	between	2008	and	2010.		Either	way,	it	is	

clear	that	while	all	predictor	variables	I	selected	were	statistically	significant	for	each	

model,	the	predictors	are	not	prescriptive	for	the	number	of	complaints	at	all	locations	

or	under	all	circumstances.			

	 For	technical	assistance,	seasonal	homes	and	corn	were	strong	predictors	for	the	

level	of	risk	in	both	seasons.		Seasonal	homes	were	positively	associated	with	risk	level	

and	corn	negatively	associated.		One	might	conclude	from	this	that	seasonal	homes	

(prevalent	in	parts	of	Northern	Wisconsin)	indicate	the	presence	of	seasonal	residents	

and	tourists	who	may	be	unfamiliar	with	black	bears.		There	is	also	a	possibility	that	

bears	in	these	areas	had	become	accustomed	to	them	in	the	spring	months	prior	to	

when	people	occupied	them.		And,	those	bears	may	have	been	unwilling	to	relocate	

despite	the	influx	of	seasonal	occupants	(who	may	also	provide	ample	anthropogenic	

foods)	as	a	result	(e.g.,	Olson	1997,	Mattson	1990,	and	McCullough	1982).		Maps	C	and	
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F.2	show	that	some	of	the	townships	with	the	highest	predicted	risk	levels	appear	to	

coincide	with	areas	known	for	their	upscale	lake	homes	and	lakeside	resorts.		Corn,	on	

the	other	hand,	is	generally	associated	with	Southern	Wisconsin	and	tends	not	to	be	a	

strong	correlate	with	black	bear	occupancy	(MacFarland	2009).		Its	strong	negative	

association	with	risk	level	was	likely	due	in	part	to	this.		Still,	it	would	be	beneficial	to	

examine	the	effects	of	corn	in	areas	where	it	is	not	common.		Areas	such	as	Sawyer	

County,	Wisconsin	have	high	complaint	levels	and	also	relatively	numerous	amounts	of	

corn	(Koele	2010).		Any	positive	association	between	corn	and	risk	level	in	such	areas	

might	have	been	inundated	by	corn	crops	in	the	South.			Oak	was	shown	to	have	a	

negative	association	with	late	summer	and	fall	technical	assistance	risk	level	which	

might	indicate	that	these	areas	provided	fall	mast	and	were	thus	less	likely	to	

experience	high	complaint	levels.		This	would	correspond	to	findings	in	Northern	

Minnesota	by	Garshelis	(1989).		Hunter	harvest	was	negatively	associated	with	late	

summer	and	fall	technical	assistance	complaints.		This	is	the	only	instance	where	hunter	

harvest	had	a	negative	association	with	risk.		It	could	be	that	hunting	reduced	these	

types	of	complaints	or	that	areas	with	higher	bear	harvests	were	less	likely	to	

experience	high	levels	of	complaints.			

	 An	interaction	between	low	level	land	development	and	hunter	harvest	was	

significant	for	spring	and	early	summer	direct	control	risk.		This	interaction	had	a	

positive	association	with	risk	level	between	2008	and	2010.		This	suggests	that	low	

level	developed	areas	near	areas	with	higher	harvests	were	more	likely	to	experience	

higher	complaint	levels.		This	could	be	a	product	of	baiting	for	bears	in	the	late	spring	
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and	summer	months	which	occurs	extensively	on	small	chunks	of	forested	land	

relatively	close	to	human	habitation	(MacFarland,	pers.	comm.)		For	late	summer	and	

fall	direct	control	risk,	corn	was	the	best	single	predictor	having	had	a	negative	

association	with	risk	(i.e.,	more	corn	indicated	less	risk).		This	could	have	been	due	to	

high	numbers	of	bears	exploiting	corn	fields	in	August	and	September	(Appendix,	Fig.	

A.3).		It	may	be	that	bears	in	areas	with	much	corn	were	more	likely	to	be	implicated	for	

agricultural	damage	than	for	residential	nuisance	behavior.		This	would	also	help	

explain	the	negative	association	between	corn	and	technical	assistance	complaints	

during	the	late	summer	and	fall	season.		Another	explanation	similar	to	one	already	put	

forth,	is	that	corn	is	strongly	associated	with	Southern	Wisconsin	and	the	negative	

association	between	corn	and	risk	level	is	a	product	of	this.	

	 Spring	and	early	summer	agricultural	complaints	primarily	involved	small	

domestic	animals	(e.g.,	chickens	and	rabbits)	and	apiaries.		Risk	levels	for	these	types	of	

complaints	were	fairly	scattered	and	showed	no	obvious	pattern	(Map	I.2).		This	is	not	

surprising	since	these	types	of	agricultural	practices	or	hobbies	likely	occur	throughout	

rural	Wisconsin.		Corn	was	the	best	single	predictor	of	spring	and	early	summer	

agricultural	risk	level.		The	association	between	corn	and	risk	level	in	this	model	was	

negative.		It	might	be	that	cropland	agriculture	provides	poor	habitat	(e.g.,	no	food	and	

little	cover)	for	bears	in	the	spring	and	early	summer	months,	and	so	they	avoid	these	

areas	then.		This	could	also	help	explain	why	corn	had	a	negative	association	with	

spring	and	early	summer	technical	assistance	risk	level.		Additionally,	it	is	important	to	

remember	that	corn	is	not	uniform	across	Wisconsin,	and	many	areas	with	high	corn	
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production	are	devoid	of	black	bears.		An	interaction	between	low	level	land	

development	and	black	bear	occupancy	was	the	best	predictor	for	late	summer	and	fall	

agricultural	risk	level.		This	was	the	only	time	this	interaction	term	was	selected	for	any	

model.		This	term	had	a	negative	association	with	expected	risk	level.		This	could	

indicate	that	townships	with	higher	quality	habitat	near	low	level	developed	areas	were	

less	likely	to	have	experienced	agricultural	damage	in	late	summer	and	early	fall.		Since	

the	vast	majority	of	these	complaints	involved	corn,	one	might	expect	that	such	areas	

generally	either	lacked	crop	fields	and/or	that	more	suitable	habitat	decreased	the	

likelihood	for	high	levels	of	crop	damage.	

	 In	sum,	it	is	evident	that	different	predictors	came	into	play	for	predicting	risk	

from	2008	to	2010.		These	predictors	varied	between	seasons	and	among	types	of	

complaints.		It	is	interesting	to	see	that	many	predictors	were	most	significant	when	

included	as	part	of	an	interaction	term.		This	suggests	that	it	is	not	cut	and	dry	when	it	

comes	to	predicting	when	or	where	black	bears	may	generate	complaints.		My	modeling	

methods	were	limited	to	a	degree	by	their	spatial	and	temporal	generalizations.		

However,	I	would	argue	that	by	averaging	complaints	across	years,	I	present	models	

that	are	more	representative	of	a	“typical”	year	in	Wisconsin.		In	addition,	by	extending	

my	study	area	beyond	occupied	bear	range,	I	provided	some	insight	into	where	bear	

conflict	could	occur	in	the	future	should	bears	expand	their	range	into	previously	

unoccupied	areas.			

	 I	would	suggest	future	research	be	conducted	to	investigate	risk	at	a	finer	

geographic	scale	(e.g.,	examining	landscape	attributes	at	individual	conflict	sites	or	for	
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hunting	zones).		One	purpose	for	these	models	was	the	risk	maps	they	produced.		I	

intended	these	to	be	of	use	for	managers	who	must	optimize	their	management	efforts	

in	space	and	time	due	to	budgetary	and	staff	constraints.		When	interpreting	my	models	

and	their	accompanying	risk	maps,	I	would	strongly	suggest	each	be	examined	in	

relation	to	the	others	and	not	in	isolation.			
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Concluding	Remarks	

 

	 Let	me	recommend	first	and	foremost	that	the	Wisconsin	Department	of	Natural	

Resources	(WDNR)	and	Wisconsin	USDA‐APHIS,	Wildlife	Services	(WS)	review	current	

policies	on	bear	complaints.		Despite	a	steadily	increasing	bear	population	since	the	late	

1980s,	the	number	of	bear	complaints	has	not	increased.		It	is	good	to	know	that	the	

rising	population	has	not	been	mirrored	by	a	dramatic	increase	in	complaints.		The	next	

step	forward	would	be	to	investigate	if	and	how	bear	complaints	might	be	reduced.	

	 WDNR	hopes	that	hunting	will	reduce	nuisance	complaints.		But,	there	is	no	

evidence	to	suggest	that	increased	hunter	take	has	reduced	complaints	in	Wisconsin.		

There	are	at	least	two	reasons	for	this.		First,	Wisconsin’s	bear	harvest	is	not	designed	

at	a	spatial	scale	on	par	with	nuisance	bears	or	bear	complaints.		Quotas	are	set	at	a	

spatial	scale	much	too	large	to	have	any	local	impact	on	nuisance	complaints,	and	my	

research	(and	that	of	others)	suggests	that	complaints	are	regional	or	local.		Second,	I	

am	unaware	of	any	current	efforts	to	assess	the	effectiveness	of	harvest	on	reducing	

conflict.		I	recommend	future	research	address	the	question	of	whether	increased	

hunting	pressure	has	reduced	bear	complaints	in	recent	years.		My	research	(and	that	of	

Kapp	2005	&	Treves	et	al.	2010)	indicates	a	positive	correlation	between	bear	harvest	

and	bear	complaints	at	several	spatial	scales.		But,	these	studies	are	limited	to	

correlation	at	larger‐than‐optimal	spatial	scales.		Harvest	data	are	collected	by	deer	

management	unit	(DMU)	and	complaint	locations	are	known	precisely.		By	focusing	in	

on	the	appropriate	scale	of	analysis	(individual	bears	and	individual	properties)	the	
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cooperating	agencies	have	a	better	chance	of	understanding	the	effect	of	harvest	on	

bear	behavior.		This	is	surely	a	project	worth	undertaking	if	harvest	quotas	continue	to	

be	justified	by	the	number	of	nuisance	bear	complaints	in	a	region.			

	 Secondly,	I	recommend	that	policies	regarding	nuisance	live‐trapping	and	

translocation	be	compared	to	those	surrounding	technical	assistance.		My	research	

suggests	the	impacts	of	translocation	do	not	extend	far	beyond	an	individual’s	property	

in	that	they	do	not	reduce	subsequent	complaints	near	that	property.		I	suggest	WS	and	

WDNR	investigate	the	current	biological	and	economic	impacts	of	translocation	and	

determine	to	what	degree	its	continued	use	is	warranted.		To	help	answer	these	

questions,	I	suggest	live‐trapped	bears	be	identified	in	some	way	(e.g.,	ear‐tagged).		

There	would	be	multiple	benefits	to	this.		For	one,	it	would	help	answer	whether	

hunters	harvest	nuisance	bears.		It	would	also	serve	to	help	managers	understand	the	

degree	to	which	trapped	bears	repeat	or	continue	nuisance	behavior.					

	 Third,	I	would	recommend	the	imminent	revision	of	Wisconsin’s	Bear	

Management	Plan	incorporate	a	social	acceptance	survey	by	which	to	measure	public	

opinion	regarding	nuisance	bear	management.		Questions	in	the	survey	could	help	

managers	understand	public	attitudes	toward	translocation,	euthanasia,	agricultural	

compensation,	and	harvesting	to	reduce	conflict.				

	 Regarding	the	nuisance	bear	program,	providing	technical	assistance	to	

complainants	is	far	and	away	the	most	common	type	of	agency‐public	interaction.		

Some	of	these	interactions	are	negative	and	serve	little	more	than	to	enhance	inimical	
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attitudes	toward	natural	resource	agencies	and	staff	(e.g.,	Berman	1997).		I	recommend	

technical	assistance	be	optimized	to	reduce	negative	interactions.		By	refocusing	efforts	

on	proactive	measures	–	like	community	workshops	–	to	prevent	conflict	and	alter	

perceptions	about	preventative	strategies,	time	spent	responding	to	conflicts	might	be	

minimized	(e.g.,	Wilson	et	al.	2008,	Bannister	et	al.	2003).		No	doubt,	there	will	be	a	

continued	need	for	a	conflict	response	hotline	because	no	reasonable	amount	of	

abatement	can	prevent	every	human‐bear	conflict.		It	may,	however,	reduce	the	need	

for	multiple	calls	with	individual	property	owners	and	perhaps	ensuing	reactive	

management.	

	 My	last	recommendation	is	not	wholly	separate	from	those	I	have	already	

mentioned.		In	essence,	my	final	recommendation	is	a	way	to	help	implement	my	

previous	suggestions.		My	research	suggests	human‐black	bear	conflict	in	Wisconsin	is	

not	ubiquitous	in	time	or	space.		There	are	drivers	of	conflict	that	vary	across	

landscapes,	among	communities	and	between	seasons.		Response	protocols	should	

attempt	to	mimic	these	variations.		I	recommend	the	nuisance	bear	program	retain	a	

strong	agency	head,	but	allow	communities	to	do	more	of	the	legwork.			There	is	a	host	

of	knowledgeable	and	dedicated	agency	staff	that	spends	much	of	their	time	addressing	

inane	complaints	like	“bear	sightings.”		Designating	community	personnel	who	could	

encourage	their	communities	to	use	bear‐proof	garbage	containers,	to	take	down	their	

feeders	during	summer	months,	and	to	learn	to	coexist	with	local	wildlife	(and	perhaps	

being	allowed	to	assume	regulatory	powers)	would	relieve	many	existing	burdens	that	

higher‐level	state	and	federal	agency	staff	now	shoulder.		The	current	black	bear	
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nuisance	program	asks	citizens	to	rely	on	a	centralized	support	structure	that	is	often	

stretched	thin.		As	counterintuitive	as	it	sounds,	a	reduction	in	complaints	might	be	

attainable	if	WDNR	and	WS	are	willing	to	do	less.			 		
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