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Abstract: Randomized, controlled trials (RCT) are seen as the strongest basis for causal 9 
inference, but their strengths of inference and error rates relative to other study have never been 10 
quantified in wildlife control and rarely in other ecological fields. We simulate common study 11 
designs from simple correlation to RCT with crossover design. We report rates of false positive, 12 
false negative, and over-estimation of treatment effects for five common study designs under 13 
various confounding interactions and effect sizes. We find non-randomized study designs mostly 14 
unreliable and that randomized designs with suitable safeguards against biases have much lower 15 
error rates. One implication is that virtually all studies of lethal predator control interventions 16 
appear unreliable. Generally, applied fields can benefit from more robust designs against the 17 
common confounding effects we simulated. 18 
 19 

Main Text: Identifying the cause of a phenomenon often holds the key to developing an 20 
effective intervention to interrupt the cause-and-effect connections or improve outcomes. The 21 
stakes increase whenever an intervention risks counter-productive effects on the target or side-22 
effects for another valued entity. Therefore, scientific and public scrutiny of outcomes rather 23 
than intentions is intensifying in many applied fields [1]. For example, as societies attach more 24 
value to wild animals, scrutiny has intensified for interventions aimed at controls intended to 25 
protect human interests from wild animals. Recognition of ineffective or counter-productive 26 
effects of lethal wildlife control has exposed an alternative to the traditional hypothesis that 27 
removing wild animals, e.g., killing gray wolves (Canis lupus), might prevent damage to assets 28 
or resources [2]. The more recent hypothesis predicts that removing wild animals might 29 
exacerbate the losses of property or threats to safety resources [2]. Hence, the field of wildlife 30 
control has become increasingly introspective about robust study designs to evaluate the 31 
effectiveness of interventions [2-5]. Resolving these uncertainties about wildlife control 32 
interventions would advance the fields of human-animal interactions and ethics, including 33 
subfields of biodiversity conservation, agricultural or other property protection, and animal 34 
welfare. Other applied fields whose interventions may backfire might also benefit from such 35 
introspection. 36 

Quantifying the strengths of inference across study designs 37 

Most investigators advocate the so-called ‘gold-standard’ of randomized, controlled trials (RCT) 38 
without biases [6-8]. Yet the urgency of problems may rule against using RCT, exposing tension 39 
between swift action and well-informed action [9]. Moreover, RCT can also be infeasible or 40 



 

2 
 

opposed by interest groups [10, 11], let alone higher standard designs with crossover (within-41 
subject analysis including the reversal of treatment and control conditions for all subjects) and 42 
other blinding steps to avoid research and publication biases [2]. Therefore, evaluations of the 43 
effectiveness of interventions in many fields often rely on lower standards of evidence than RCT 44 
[1, 11, 12]. Drawing inferences from studies with less robust designs than RCT is the norm in 45 
studies of wildlife or ecosystems [3, 11, 13], including our field of wildlife control [2-5]. 46 
Approximately 75% of studies in one review of North American and European wildlife control 47 
interventions [5], and an unquantified majority of studies in global reviews of wildlife control [3, 48 
14, 15] were non-randomized. Lower standard study designs produce weaker inference because 49 
they lack random assignment of treatments and controls or even strict observational controls.  50 

Employing the convenient shorthand and ranking RCT as the gold-standard, we refer to the 51 
platinum-standard for crossover designs defined as above, and we hypothesize that one could 52 
improve the strength of inference in RCT by employing a within-subjects before-and-after 53 
intervention[(rBACI, for "before-after-control” impact or intervention, depending on how the 54 
authors name it [2, 5, 16, 17]]. When non-randomized, we refer to nBACI or the ‘silver 55 
standard’.  56 

The lowest standard in this study is the ‘bronze standard’ of simple correlation, which compares 57 
different doses of intervention and outcomes. This so-called bronze-standard lacks within-58 
subjects comparisons so it introduces additional confounding variables of pre-existing 59 
differences between subjects. Therefore, some authors [2, 5] predicted that the gold-standard and 60 
higher would outperform the silver- and bronze-standards in strength of inference by a factor of 61 
two or more. They further predicted that nBACI would outperform simple correlations and 62 
rBACI would outperform RCT, but did not estimate by how much [2].  63 

However, randomized designs are not free of concerns [6]. Murtaugh [17] simulated how 64 
temporal autocorrelations confounded the interpretation of a treatment effect. Among the 65 
concerns, false positive rates (FPR, inferring a treatment effect when none exists) figure 66 
prominently, e.g., electric fences are routinely deemed effective in wildlife control when the 67 
evidence is fairly weak [4]. FPR are usually under-estimated due to confusion with p-values 68 
which do not tell us how often a test or intervention will fail [8, 18]. Also, "new discoveries" in 69 
which the null hypothesis of no effect of an intervention is rejected, under the traditional p=0.05 70 
threshold for statistical significance, have been producing high levels of spurious findings that 71 
fail replication attempts, whether or not they use randomized study designs [1]. A short-term 72 
remedy might be to lower the threshold for significance to p=0.005 for new discoveries. But 73 
more importantly, Benjamin et al. [1] urge all applied fields to strengthen inference through more 74 
robust study designs with safeguards against research and publication biases.  75 

Simulations to quantify error rates 76 

Here we quantify error rates to compare five study designs and their strengths of inference about 77 
the effectiveness of lethal wildlife control interventions, following [11, 12]. The simulations in 78 
[12] revealed that sample size and study design interact in a complex fashion to influence the 79 
probability of detecting true effects on population density change. Here we extend that study by 80 
holding sample size constant and investigating two sources of confounding effects. First, we 81 
investigate the influence of background interactions arising from correlations between baseline 82 
state and intervention (i.e., in our context, property loss and wildlife removal), which is 83 
analogous to self-selection or treatment bias. This is a very common interaction in our subfield. 84 
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Second, we investigate the confounding effect of correlation between baseline property loss and 85 
subsequent property loss in the absence of intervention (temporal autocorrelation). Third, we 86 
extend [8, 11, 12] by measuring error rates in simulations of study designs that use Pearson 87 
correlation coefficients when treatment effects vary in size and stochasticity. We use simple 88 
simulations that expose the rates of Type I errors, Type II errors. and spurious correlations in 89 
which the direction of the sign of correlation is reversed when compared to the true direction of 90 
the cause and effect. We calculate FPRs and over-estimation bias.  91 

Our approach applies generally to many or all fields that investigate systems characterized by the 92 
baseline-intervention-outcome or state-stimulus-reaction causal relationships, including so-called 93 
natural experiments. Our simulations model only three parameters and their itneractions: (1) loss 94 
of asset or resource prior to intervention, analogous to the baseline/state; (2) removal of wildlife, 95 
shortly after time t, analogous to the intervention/stimulus; and (3) loss after intervention, 96 
analogous to the outcome/reaction. 97 
Methods 98 
All variable names and definitions are presented in SM Table S1 along with definitions of study 99 
designs and models. 100 
 101 
To test the traditional wildlife control hypothesis (negative effect of treatment) and more recent 102 
hypothesis (positive effect of treatment), we simulated losses of property such as the number of 103 
domestic animals L t lost at time t, followed by the intervention as people removed W wild 104 
animals, and then we simulated losses in the next time step (L t+1). To simulate crossover 105 
designs, we added W at time t + 1 resulting in L t+2. We modeled all W and L as independent, 106 
normally distributed random, real numbers from zero to one inclusive, hereafter R. We varied 107 
background interactions (B) to mimic potential conditions in the real world (see Credibility of 108 
models below). 109 
 110 
Estimating Type I and II error rates 111 
Type I errors create false positives (we infer an effect of treatment when none exists) and Type II 112 
errors lead to false negatives (we infer no treatment effect when one exists). We simulated 113 
separately for each type of error. Separately with new iterations of simulations, we examined 114 
extreme Type I error when the sign of correlation was reversed over the true sign of correlation. 115 
In that simulation, we also examined extreme overestimation of treatment effects by >2SD above 116 
a positive mean treatment effect or >2SD below a negative mean treatment effect. 117 
 118 
In step one, we set T = 0 for no treatment effect (W x T) and assigned B = 0, -1.16, +1.16, -2.32, 119 
or +2.32. We combined different background interactions for Models 0-8 to estimate rates of 120 
Type I errors (Table 1, Panels A–D). We set the coefficients empirically to yield an average 121 
Pearson r = 0.50 (n=1000 replicates, 10 iterations) so there would be an equal space in either tail 122 
for errors. We simulated 200 sets of 20 correlation coefficients with n=50 replicates each (400 123 
iterations per scenario) for each of the 9 model permutations (3600 iterations per scenario-124 
model). 125 
 126 
In step two, we repeated the same number of independent simulations as in step one. We 127 
simulated cause-and-effect relationships between W and L t+1 (i.e., we set T = ±0.58, Table 1, 128 
Panels E-H), to estimate rates of Type II errors (Table 1, Panels E–H).  129 
 130 
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For step three, we estimated false positive rates (FPR) following [8] as Type I error rate/[Type I 131 
error rate + (1- Type II error rate)] using data from Table 1 to construct Table 2. 132 
 133 
In step four, we produced five new independent simulations (400 iterations each) to investigate 134 
variations of the Type I error in which the lack of a treatment effect changed from a constant T = 135 
0 to a normally distributed random variable centered on zero but with more or less variability per 136 
subject from -0.5 to +0.5, -1 to +1, -2 to +2, -4 to +4, and finally -8 to +8. Operationally, we 137 
created that random T by subtracting two random numbers of equal magnitude from each other 138 
for every replicate. This is analogous to a treatment effect that varies by subject (see Credibility 139 
of models below). We estimated Type I error rates again as above. We modeled with a 140 
generalized linear mixed model those error rates with four predictors (study design, variable 141 
treatment effect for each replicate, background interactions from Models 3 and 4, and the 142 
direction of the Type I error (i.e., whether a spurious significant result emerged for a positive or a 143 
negative correlation).  144 
 145 
In steps five and six, we explored the extreme Type II errors. We ran seven simulations 146 
independent of those above (400 iterations each). For sign reversal, we counted the number of 147 
correlation coefficients that had an opposite sign as the real correlation regardless of the 148 
magnitude. In step 5, for extreme errors we repeated the procedure in steps 1-2 but counted the 149 
number of treatment effect size estimates that exceeded the mean +2SD for a positive treatment 150 
effect or fell below the mean -2SD for a negative treatment effect. For both steps 3 and 4, 151 
temporal autocorrelation (B) varied from -2.32 to +2.32 independently of study design. We 152 
estimated mean and standard deviations of error rates in both steps (Figs. 1 and 2). 153 
 154 
In all steps, we chose deterministic and probabilistic scenarios in preference to empirical 155 
domestic animal loss rates from the literature, because the latter would include unmeasured 156 
background interactions and unreported treatment (e.g., poaching), which would undermine our 157 
effort at measuring the odds of Type I and II errors. 158 
 159 
Credibility of models 160 
Background interactions simulate common situations in wildlife control. A positive correlation 161 
between W and L t (Models 1 and 2, Table S1) mimics a common background interaction in 162 
which people kill more predators if losses were high in the past [19]. Probably uncommon, a 163 
negative correlation between W and L t mimics when people kill fewer predators after high 164 
losses, e.g., when people and wildlife separate spatially after high losses [20, 21]. A positive 165 
correlation between L t and L t+1 (Models 3 and 4, Table S1) without intervention mimics a 166 
common temporal autocorrelation, in which sites with high losses one year have high losses the 167 
next year [22, 23]. Possibly less common, a negative temporal autocorrelation mimics cyclical 168 
patterns of damage in non-sequential years. For example, when wild food availability influences 169 
bear damage to crops and human foods, one may see a negative temporal autocorrelation of 170 
losses from year to year [24, 25]. Or, if predators switch from domestic to wild prey selection 171 
based on their relative scarcity or vulnerability varying over time, we can see prey switching 172 
from season to season that might produce negative autocorrelations of losses in sequential time 173 
steps [26-29].  174 
 175 
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These first four background interactions create univariate permutations. In the last four bivariate 176 
permutations (Models 5–8, Table S1), we simulated both sets of interactions occurring 177 
simultaneously in a two by two matrix of positive or negative interactions. For step four, when 178 
we varied the treatment effect size in every replicate, we mimicked a situation in which the same 179 
dose had variable effects on different replicates. For example, an individual predator may 180 
respond differently than its neighbor or the composition of social groups may affect how the 181 
survivors respond to removal of a group member, e.g., removing alpha individuals from a wolf 182 
pack is expected to have different effects than removing subordinate adults or pups from a pack, 183 
and even packs experiencing the same removal of dominant breeders might have different effects 184 
depending on timing and availability of replacement breeders [30]. Hence, the same dose (W) 185 
could have different treatment effect (T) depending on the idiosyncrasies of different replicates. 186 
Similarly, some individual predators might be attracted or repelled by vacancies left by removals 187 
of other predators [31]. Alternately, any of the individuals involved might respond differently to 188 
lethal treatments. Theory provides five potential explanations for why the traditional hypothesis 189 
may fail [31]. In brief, the wrong predators may be killed, e.g., [32]; the survivors may prey on 190 
livestock that are mor predictable than wild prey after the predators’ social group has been 191 
disrupted, e.g., pack hunting carnivores that rely on teamwork to hunt or reproduce successfully, 192 
e.g., [33]; more immigrants may replace fewer residents that were killed, e.g., [34]; smaller-193 
bodied predator species at higher densities may refill the vacancies left by larger, scarcer 194 
predator species that died, e.g., [35]; or humans and domestic animals may change their behavior 195 
after lethal intervention.  When we consider the entire set of actors, predators, humans, and 196 
domestic animals, one can imagine interindividual differences in response to lethal interventions. 197 
For example, some bold and tolerant individuals might explore wilder habitat after predator 198 
removal while others might continue to avoid those areas [31]. In short, the same treatment of 199 
different actors could result in diametrically opposed consequences even though the treatment 200 
did have an effect on a subset of replicates. Despite different effects on different subjects, across 201 
replicates, the general effect of treatment approximates zero so we estimated Type I error rates.  202 
 203 
Analysis 204 
We calculated Pearson’s correlation coefficient r in JMP Pro V15.0.0 (SAS 2019). Pearson’s r is 205 
easily interpretable, dimensionless, and suitable for normally distributed, random variables [36]. 206 
With normally distributed response variables like L and change in L, Pearson’s r is unbiased, 207 
normal (Anderson-Darling test A = 0.78, p = 0.05 and A = 0.37, p =0.38, respectively). We 208 
calculated r in 20 batches of 50 replicates (analogous to independent sites or populations), a 209 
larger sample size than most studies of wildlife control. We used the Pearson r standard critical 210 
value of |r| = 0.273 (two-tailed test at alpha=0.05, n=50 calculated from 211 
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-212 
correlation-coefficient/table-of-critical-values-pearson-correlation/, accessed 5 July 2023) in 400 213 
iterations of each combination of scenarios (Table S1) for a total of 108,000 independent 214 
combinations. We calculated 400 correlations per simulation (108 scenarios in Table 1, 25 215 
scenarios for the mixed model of Type I errors, and 35 scenarios for extreme Type II errors) for a 216 
total of 67,200 Pearson r values including 50 independent replicates each. There were fewer 217 
scenarios for randomized designs because the background interactions of L t correlated with W 218 
were eliminated by random assignment procedures (Table S1). 219 
 220 
We involved neither animals nor human subjects in this research. 221 
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Results 222 

False Positive Rates (FPR) 223 

As predicted in [2], study designs differed noticeably in Type I and II error rates (Table 1) and 224 
therefore, in FPR (Table 2). As predicted by [8], FPRs exceeded Type I error rates based on p 225 
values in 93% (100/108) of our simulations (Table 2). None of the scenarios had FPR <1%. 226 
Therefore, we echo calls for lowering the statistical threshold for new discoveries [1].  227 

The lowest FPR was 3.9% for rBACI when there were no background interactions (Table 2). In 8 228 
scenarios, the FPR was 5.0% or less (4 scenarios with rBACI and 4 with crossover). Although 229 
rBACI had two of the lowest FPR (Table 2), it was outperformed by crossover when we 230 
introduced temporal autocorrelation in either direction, i.e., background interaction between B 231 
due to correlation between L t and L t+1. Indeed, crossover designs had a lower average FPR 232 
across 12 scenarios (6.1%, SD 1.4%) than RCT (6.4%, SD 1.0%) and rBACI (6.5%, SD 2.6%). 233 
Although these differences in FPR among randomized designs are small, the case for crossover 234 
design strengthened as we explain next.  235 

We used a generalized linear mixed equation to model the interactions between confounding 236 
effects and study design on Type I error rates when treatment effects were centered on zero, but 237 
random in each replicate, i.e., no treatment effect in general (see Methods for examples of when 238 
this might arise). The mixed model revealed significant fixed effects only for study design (df=4, 239 
F=78, p<0.00001) and variable treatment effect for each replicate (df=1, F=31, p<0.0001); 240 
neither direction of error (df=1, F=0.2, p=0.62) nor the magnitude of temporal autocorrelation 241 
(df=6, F=1, p=0.44) were predictive of error. Also, study design and variable treatment effect for 242 
each replicate interacted significantly to predict the Type I error (df=4, F = 64, p<0.0001). 243 
Crossover performed best, because RCT and rBACI were somewhat vulnerable to randomly 244 
varying treatment effects (0.8% higher error rates), probably because the crossover design 245 
exposes each replicate to both control (treatment T = 0) and treatment (T varies randomly around 246 
zero) conditions. Because Type I error rates contribute to FPR directly, crossover design 247 
(platinum-standard) provided a stronger inference than the other study designs we tested [2].  248 

Given FPR >1% seem risky to us, we recommend lowering the threshold for significance even 249 
when randomized designs are employed. Our results also corroborate prior cautions to measure 250 
and account for temporal autocorrelation [17]. We believe that temporal autocorrelation is a 251 
common condition in our field because of the widespread and frequent reports of 'hot spots' of 252 
damage by wild animals year after year [22, 37-40]. 253 

By comparison to the randomized study designs, we cannot recommend simple correlation or 254 
nBACI (bronze- and silver-standard, respectively) because their FPR ranged from 5.2-42% and 255 
5.8-88%, respectively (Table 2). Negative temporal autocorrelation (Model 4) made these 256 
designs particularly vulnerable with FPR two to three times higher than for positive temporal 257 
autocorrelation. The highest FPR arose in Models 5-8 (Table 2). Although nBACI was somewhat 258 
resistant to Models 5 and 8 when the background interactions were strong (2.32), nBACI failed 259 
in most cases, including several with only one background interaction (Table 2). Although 260 
simple correlations yielded consistent FPR of 5-12.5% when we introduced only one background 261 
interaction, their FPR rose above 20% whenever we included two background interactions.  262 

Although one might be tempted to look at a few low Type I error rates in Table 1 for simple 263 
correlation and nBACI, and declare these study designs viable in many circumstances, the FPR 264 
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in Table 2 warn against such confidence. Also, with FPR for simple correlation averaging 16% 265 
(SD 12%) and nBACI averaging 29% (SD 25%), in the absence of good evidence about 266 
background interactions, one should not credit these study designs. Indeed, in many experimental 267 
situations, particularly under field conditions surrounding wildlife control, researchers will have 268 
little or no evidence to dismiss background interactions. Even when such evidence for 269 
background interactions is robust and well-accounted in the analyses, few researchers in our field 270 
can build a sample size of 50 on which our simulations depend. Therefore, FPR values in Table 2 271 
are likely under-estimates of what others will encounter with smaller samples, imperfect 272 
randomization, variable treatment effect for each replicate, deviations from the assumptions of 273 
Pearson correlations, and measurement error [8]. 274 

Severe Type II errors: overestimation and sign reversal 275 

Some of the simulated Type II error rates were very high (Table 1), which by itself may not raise 276 
concern because Type II error conservatively leads us to infer no effect when one exists in 277 
reality. However, reporting the opposite sign of correlation than the real direction of correlation 278 
when a treatment is effective would be an extreme form of Type II error that merits concern (Fig. 279 
1). Also, when we overestimate the real effect substantially (e.g., >2SD above a positive mean or 280 
below a negative mean), exaggerated claims about treatment effectiveness can mislead users, 281 
payers, and distributors of that treatment (Fig. 2). As temporal autocorrelation increased, the rate 282 
of sign reversal increased and simple correlation was more strongly affected than nBACI (Fig. 283 
1). The converse was true for overestimation error, which declined among the non-randomized 284 
study designs. Simple correlation was less prone to these errors than nBACI (Fig. 2).  285 
 286 

Compared to randomized designs, the rates of sign reversal for simple correlation and nBACI 287 
were higher (8% and 0.8% respectively; only simple correlation differed significantly from every 288 
other design, each t-test pairwise comparison p<0.0001) than randomized designs (RCT – 0.09%, 289 
rBACI – 2%, crossover – 0.08%, which did not differ among randomized designs, Welch test 290 
unequal variances, F ratio = 2, p=0.15).  291 

Similarly, non-randomized designs had higher rates of overestimating treatment effect sizes (8% 292 
for simple correlation and 31% for nBACI), which differed significantly from randomized 293 
designs (p<0.0001 for each pairwise comparison with nBACI, p<0.009 for pairwise comparisons 294 
of simple correlation to each randomized design). Also, randomized study designs were 295 
statistically different in rates of overestimation error (RCT – 0.2%, rBACI – 1%, crossover – 3%, 296 
F ratio = 31, p<0.0001). 297 

In sum, our predictions of the relative strength of inference among study designs were only 298 
partly supported [2]. The predicted difference between simple correlation (bronze-standard) and 299 
nBACI (silver-standard) held for sign reversal (Fig. 1), but not for overestimation bias (Fig. 2) or 300 
most FPR (Table 2). Similarly, the so-called gold+ of rBACI compared to gold-standard RCT 301 
did not play out as we predicted [2]. Yet, our predictions about crossover design (platinum-302 
standard) producing stronger inference than RCT and rBACI (gold-standards) were supported. 303 
Therefore, we revised our first hypotheses [2] by producing a schematic graph of relative 304 
strengths of inference estimated for five study designs (Fig. 3). 305 

Discussion 306 
Some public authorities may not test treatments with randomized, controlled experiments 307 
because they perceive intervening as infeasible or impractical, perhaps in part because they 308 
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believe the treatments will be popular and the placebo controls will be unpopular, e.g., [41]. 309 
Therefore, authorities may prefer to intervene in ways they consider less controversial, such as 310 
treating all subjects or serving the loudest complainants [[5], see webpanel 1]. Such steps that 311 
lead to non-randomized study designs risk backfiring or wasting time and resources. 312 
 313 
When subjects are self-selected (self-selection bias), vulnerable subjects receive higher doses 314 
(treatment bias), or baseline conditions affect outcomes and not just treatments (e.g., temporal 315 
autocorrelation), we can expect high false positive rates (FPR, Table 2), especially for non-316 
random before-and-after comparisons of interventions (nBACI). When background interactions 317 
are strong, FPR rise sharply (Table 2). When both sets of background interactions coincide, we 318 
estimated that wrong conclusions would be drawn in 18–42% of simple correlation studies and 319 
even more variably in 8–88% of nBACI (Table 2). Also, when temporal autocorrelation is 320 
present, the results of non-randomized study designs will produce additional errors even if the 321 
study is designed to minimize false positives. Non-randomized designs pose a considerable risk 322 
of the reversal of the sign of correlation, which can substantially mislead researchers and 323 
practitioners about the treatment effect (Fig. 1). If sign reversal does not occur, overestimation of 324 
treatment effects is also possible (Fig. 2). These compounding errors associated with non-325 
randomized study designs can be visualized as a hierarchy of study designs (Fig. 3). 326 

Overall, the compounding errors weigh heavily against non-randomized designs (Fig. 3). Unlike 327 
randomized designs, non-randomized designs produce errors asymmetrical with regard to 328 
positive or negative background interactions (Figs. 1, 2). Namely, positive temporal 329 
autocorrelations produced more sign reversal errors and fewer overestimation errors in non-330 
randomized designs than did negative temporal autocorrelations. That asymmetry would tend to 331 
confuse the direction of the treatment effect more often when outcomes correlate positively to 332 
baseline conditions (Fig. 1); that situation is common in our subfield where hot spots of wildlife 333 
damage recur annually (SM).  334 

Regrettably, predator control has been dominated by unreliable, non-randomized studies. Hence, 335 
predictably, there is no scientific consensus about the effects of predator control on subsequent 336 
domestic animal losses, particularly in case of lethal treatments [3, 14, 15]. For example, non-337 
randomized study designs have produced equivocal results for lethal control including recurrent 338 
findings of counter-productive increases in domestic animal losses following killing gray wolves 339 
[42, 43], bears (Ursus spp.) [25, 44, 45] and cougars (Puma concolor) [46, 47]. Theory provides 340 
five potential explanations for why the traditional hypothesis may fail, cf. [31] and described 341 
with references in Methods. In brief, the wrong predators may be killed; the survivors’ behaviors 342 
may change if they relied on group-mates that were killed; immigrants of the same species or 343 
smaller-bodied predatory species may refill in greater numbers the vacancies left after killing; or 344 
survivors of any species may change behavior after predators are removed.  345 

Even well-financed RCT across broad areas may be hard to interpret, e.g., U.K.-funded RCT of 346 
badger (Meles meles) killing to prevent bovine tuberculosis documented variable effects of this 347 
intervention that can be difficult to detect [48-53].Even methods considered politically 348 
unpalatable but highly effective, such as poisoning red foxes (Vulpes vulpes) in Australia to 349 
protect sheep, when tested with RCT prove highly variable in effect [54]. The latter research 350 
team concluded from an RCT that poisoning foxes wasted much effort and was ineffective 351 
because it produced very slight decreases in lamb mortality. Despite these doubts, lethal methods 352 
are rarely subjected to RCT. Most randomized studies of predator control have been conducted 353 
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on non-lethal methods to prevent predators from damaging property [41, 55, 56]. An analogy 354 
would be to ignore experiments on handgun control [57] while subjecting pepper spray to robust 355 
RCT. Moreover, in the absence of scientific consensus the historical intervention of killing 356 
predators continues unabated despite years of criticism [5, 48].  357 

The resilience of lethal treatments in policy circles may reflect a perceptual bias of “cherry 358 
picking” arising from the adoption of a few effective cases and the dismissal of more numerous 359 
ineffective cases [33, 42, 43, 58]. Our mixed models show that treatments that help some 360 
replicates and harm others will raise FPR with worrying frequency in non-randomized studies. In 361 
addition, animal killing may fall into another perceptual bias because either humans cannot 362 
recognize individual animals, some of which are culprits and some of which are not [32, 33], or 363 
some persons may claim a lethal treatment has succeeded because the death of a competitor 364 
might have been their primary goal regardless of its culpability.  365 

If a non-randomized design is analyzed in spite of our cautions above, researchers should 366 
account for potential self-selection bias, treatment bias, and temporal autocorrelation. For 367 
example, lethal wildlife control studies should measure (a) killing and property losses before that 368 
killing occurred, and (b) property losses from year to year in the absence of intervention [17, 43]. 369 
The absence of intervention includes unplanned or unregulated interventions by the people 370 
participating or using the same areas. This is a very difficult hurdle to overcome without strict 371 
control of participant actions because predator killing can still be present as an illicit behavior 372 
and hushed up [59-61]. Therefore, we suggest randomized designs in smaller, well-controlled 373 
sites are likely to be more feasible than strict control over potentially confounding variables 374 
across entire landscapes. Even for randomized designs, we counsel care because FPR does not 375 
diminish to zero. To lower the risk of FPR, we recommend the platinum-standard crossover 376 
design RCT (all subjects receive both treatment and placebo in random order), lowering the 377 
significance threshold [1], and other safeguards against bias [2]. 378 

A common argument for drawing inference from non-randomized studies has been that experts 379 
can infer accurately despite confounding variables [17]. For example, expert-based adaptive 380 
managers claim they can intervene, learn, and revise without exacerbating the problems at hand 381 
and without exposing hypotheses to experimental test [62, 63]. That argument depends on 382 
learning correctly. The counter-argument is that biased designs and lower standards hinder 383 
learning with false information and can produce inferences diametrically opposed to the actual 384 
effect of interventions [6, 64]. Our results of sign reversal in treatment effects support that 385 
concern. Therefore, prioritizing randomized designs for urgent and important policy decisions 386 
may avoid the age-old problem that haste makes waste. The reasoning here provides a guide to 387 
donors, regulators, and the public to anticipate situations in which RCT becomes a prerequisite 388 
for reliable inference and sound policy. 389 
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 600 
 601 
Figure 1. Severe Type II error resulting in reversal of the sign of correlation, in relation to 602 
temporal autocorrelation between L t and L t+1 (B). We present a curve fit by second-order 603 
ordinary least squares regression for visualization purposes only for each study design (dashed 604 
green = simple correlation, solid, thick green = nBACI, gold = RCT, purple = rBACI, red = 605 
crossover). The x-axis presents varying levels of temporal autocorrelation from Models 3 and 4 606 
(Table S1). The y-axis presents the frequency of reversal of the true sign of correlation to the 607 
opposite sign estimated from 400 iterations of each combination of study design and value of B.  608 
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 610 
 611 
Figure 2. Overestimation of treatment effect in relation to temporal autocorrelation 612 
between L t and L t+1 (B). We present a curve fit by second-order ordinary least squares 613 
regression for visualization purposes only for each study design (dashed green = simple 614 
correlation, solid, thick green = nBACI, gold = RCT, purple = rBACI, red = crossover). The x-615 
axis presents varying levels of temporal autocorrelation from Models 3 and 4 (Table S1). The y-616 
axis presents the frequency of overestimation of treatment effect >2 SD below and above the 617 
mean estimated from 400 iterations per data point. Simulations are the same as in Fig. 1. 618 
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 621 
 622 
Figure 3. Relative strength of inference (100% - mean error rate) for crossover (platinum), 623 
RCT (gold), rBACI (gold), nBACI (silver), and simple correlation (bronze). The height of 624 
polygons is scaled to the 95% CI within each panel: (A) False positive rates, (B) Rates of 625 
overestimating as treatment effect, and (C) Rate of sign reversal. Side-by-side bars (e.g., panel A 626 
platinum and gold standards indicate identical mean and 95% CI but stacked bars indicate means 627 
were not identical (e.g., Panel C). 628 
 629 

 630 
Table 1. Error rates estimated with and without background interactions: (A) B=1.16, (B) 631 
B=2.32, (C, D) T = 0 for Type I error; (E–H) are set to T = 0.58 x W. 632 

 Simple 
correlatio
n 

nBAC
I 

RCT 
† 

rBACI 
† 

Crossov
er design 
† 

Simple 
correlation 

nBACI RCT 
† 

rBAC
I † 

Crossover 
design † 

Models A. Background interactions 1.16 B. Background interactions 2.32 

C. Type I errors D. Type I errors 

0 0.053 0.053 0.05
5 

0.040 0.068 0.053 0.053 0.055 0.040 0.068 

1 0.055 0.515    0.068 0.745    

2 0.068 0.548    0.060 0.718    

3 0.050 0.050 0.07
5 

0.060 0.043 0.038 0.045 0.05
3 

0.04
8 

0.035 

4 0.045 0.075 0.06
3 

0.083 0.050 0.058 0.070 0.05
3 

0.05
5 

0.060 

5 0.225 0.145    0.405 0.105    
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6 0.223 0.595    0.435 0.743    

7 0.240 0.615    0.448 0.760    

8 0.218 0.158    0.455 0.088    

Models E. Type II errors, positive 
treatment 

F. Type II errors, positive treatment 

0 0.025 0.185 0.00
0 

0.023 0.193 0.025 0.185 0.00
0 

0.02
3 

0.193 

1 0.005 0.385    0.000 0.010    

2 0.000 0.000    0.000 0.000    

3 0.245 0.195 0.02
0 

0.020 0.190 0.515 0.475 0.35
0 

0.23
8 

0.203 

4 0.190 0.410 0.03
0 

0.238 0.200 0.595 0.710 0.34
0 

0.50
5 

0.165 

5 0.005 0.135    0.000 0.000    

6 0.210 0.915    0.365 0.890    

7 0.000 0.000    0.000 0.000    

8 0.190 0.000    0.350 0.015    

Models G. Type II errors, negative treatment H. Type II errors, negative treatment 

0 0.030 0.195 0.00
0 

0.015 0.188 0.030 0.195 0.00
0 

0.01
5 

0.188 

1 0.000 0.000    0.000 0.000    

2 0.000 0.440    0.000 0.005    

3 0.255 0.220 0.03
3 

0.030 0.185 0.640 0.500 0.27
5 

0.17
3 

0.205 

4 0.205 0.435 0.01
8 

0.215 0.208 0.575 0.715 0.33
8 

0.50
5 

0.245 

5 0.180 0.005    0.385 0.025    

6 0.005 0.005    0.005 0.005    

7 0.180 0.890    0.370 0.895    

8 0.000 0.075    0.000 0.000    
† Blank cells reflect that random assignment eliminates a correlation between W and L t. 633 
 634 
 635 
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Table 2. False positive rates (FPR) estimated from Type I and II error rates in Table 1 with 636 
background interactions: (A) B = 1.16 (B) B = 2.32, (C) positive treatment effect, (D) negative 637 
treatment effect. 638 

 False positive rates (FPR) % 

Models Simple 
correla
tion 

nBACI RCT 
† 

rBACI 
† 

Crossov
er 
design† 

Simple 
correlat
ion 

nBACI RCT † rBACI 
† 

Crossov
er 
design† 

 A. Background interactions 1.16 B. Background interactions 2.32 

 C. Positive treatment †† 

0 5.2 6.1 5.2 3.9 7.8 5.2 6.1 5.2 3.9 7.8 

1 5.5 45.6    6.4 42.9    

2 6.4 35.4    5.7 41.8    

3 6.2 5.8 7.1 5.8 5.0 7.3 7.9 7.5 5.9 4.2 

4 5.3 11.3 6.1 9.8 5.9 12.5 19.4 7.4 10.0 6.7 

5 18.4 14.4    28.8 9.5    

6 22.0 87.5    40.7 87.1    

7 19.4 38.1    30.9 43.2    

8 21.2 13.6    41.2 8.2    

 D. Negative treatment effect †† 

0 5.2 6.2 5.2 3.9 7.7 5.2 6.2 5.2 3.9 7.7 

1 5.2 34.0    6.6 42.7    

2 6.4 49.5    5.7 41.9    

3 6.3 6.0 7.2 5.8 5.0 9.5 8.3 6.8 5.5 4.2 

4 5.4 11.7 6.0 9.6 5.9 12.0 19.7 7.4 10.0 7.4 

5 21.5 12.7    39.7 9.7    

6 18.3 37.4    30.4 42.8    

7 22.6 84.8    41.6 87.9    

8 17.9 14.6    31.3 8.1    

Minimum 5.2 5.8 5.2 3.9 5.0 4.35.2 6.1 5.2 3.9 4.2 

95% CI of 
mean 

9–15 17–41 5–7 4–8 5–7 13–27 18–42 6–8 5–9 5–7 

† Blank cells reflect that random assignment eliminates a correlation between W and L t. 639 
†† Simulated positive treatments may produce different FPR than negative treatments. 640 
 641 


