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Randomized, controlled trials (RCT) are seen as the strongest basis for causal inference, but their 
strengths of inference and error rates relative to other study designs have never been quantified for 
interventions designed to prevent wildlife damage to property and game. We simulate common study 
designs from simple correlation to RCT with crossover design. We report rates of false positive, false 
negative, and over-estimation of treatment effects for five common study designs under various 
confounding interactions and effect sizes. We find non-randomized study designs mostly unreliable 
and that randomized designs with suitable safeguards against biases have much lower error rates. 
One implication is that virtually all studies of lethal interventions against predatory wildlife appear 
unreliable. Generally, applied fields can benefit from more robust designs against the common 
confounding effects we simulated.

Identifying the cause of a phenomenon often holds the key to developing an effective intervention to interrupt 
the cause-and-effect connections or improve outcomes. The stakes increase whenever an intervention produces 
counter-productive effects on the target or side-effects for another valued entity. Therefore, scientific and public 
scrutiny of outcomes rather than intentions is intensifying in many applied fields1,2. For example, as societies 
attach more value to wild animals, scrutiny has intensified for interventions intended to protect human interests 
from wild animals. Recognition of ineffective or counter-productive effects of lethal wildlife control has exposed 
an alternative to the traditional hypothesis that removing wild animals, e.g., killing gray wolves (Canis lupus), 
might prevent damage to assets or resources3. The more recent hypothesis predicts that removing wild animals 
might exacerbate the losses of property or threats to safety or resources3. Hence, wildlife scientists have become 
increasingly introspective about robust study designs to evaluate the effectiveness of interventions to prevent 
wildlife damage to things people value, hereafter wildlife control interventions or predator control2–5. Resolving 
these uncertainties about wildlife control interventions would advance the fields of human-animal interactions 
and ethics, including subfields of biodiversity conservation, agricultural or other property protection, predator-
prey management, and animal welfare. Other applied fields whose interventions may backfire might also benefit 
from such introspection.

Quantifying the strengths of inference across study designs
Most investigators advocate the so-called ‘gold standard’ of randomized, controlled trials (RCT) without 
biases6–8. We define the following paragraphs of standards in Table S1. Yet the urgency of problems may rule 
against using RCT, exposing tension between swift action and well-informed action9. Moreover, RCT can also 
be opposed by interest groups10,11, or practically infeasible, especially for higher standard designs. When RCT 
are fortified by crossover (within-subject analysis including the reversal of treatment and control conditions 
for all subjects) and other blinding steps it may seem impractical for field practitioners to avoid research and 
publication biases3. Therefore, evaluations of the effectiveness of interventions in many fields often rely on lower 
standards of evidence than randomized designs1,11,12. Drawing inferences from studies with less robust designs 
than RCT is the norm in studies of wildlife or ecosystems11,13,14, including our field of wildlife control3–5,14. 
Approximately 75% of studies in a review of North American and European wildlife control interventions5, and 
an unquantified majority of studies in global reviews of wildlife control14–16 used non-randomized study designs.

Employing the convenient shorthand and ranking RCT as the gold standard, we refer to the platinum standard 
for crossover designs defined as above and in Table S1, and hypothesize that one could improve the strength of 
inference in RCT by employing a within-subjects before-and-after intervention (rBACI for randomized ‘before-
after-control-impact’ design of an intervention, depending on how the authors name it3,5,17,18).  So, we set a 
gold+ standard for rBACI. When non-randomized, we refer to a study design as nBACI or the ‘silver standard’. 
The lowest standard in this study is the ‘bronze standard’ of simple correlation, which compares different doses 
of intervention and outcomes.
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The so-called ‘bronze standard’ lacks within-subjects comparisons so it introduces additional confounding 
variables of pre-existing differences between subjects (Table S1). Therefore, some authors3,5 predicted that the 
gold standard and higher would outperform the silver and bronze standards in strength of inference by a factor 
of two or more. They further predicted that nBACI would outperform simple correlations and rBACI would 
outperform RCT, but did not estimate by how much3.

However, randomized designs are not free of concerns6. Murtaugh18 simulated how temporal autocorrelations 
confounded the interpretation of a treatment effect in BACI designs employing both non-randomized and 
randomized designs17. Among the concerns, false positive rates (FPR, inferring a treatment effect when none 
exists) figure prominently, e.g., electric fences are routinely deemed effective in wildlife control when the 
evidence is fairly weak4. FPR are usually under-estimated due to confusion with p-values which do not tell us 
how often a test or intervention will fail8,19. Also, “new discoveries” in which the null hypothesis of no effect of an 
intervention is rejected, under the traditional p = 0.05 threshold for statistical significance, have been producing 
high levels of spurious findings that fail replication attempts, whether or not they use randomized study designs1. 
A short-term remedy might be to lower the threshold for significance to p = 0.005 for new discoveries and 
reserve the traditional p = 0.05 threshold for replication efforts1. But more importantly, Benjamin et al.1 urge all 
applied fields to strengthen inference through more robust study designs with safeguards against research and 
publication biases.

Simulations to quantify error rates
Here we quantified error rates to compare five study designs and their strengths of inference about the 
effectiveness of wildlife control interventions. Specifically, we simulated predator removal, in which predators 
are removed so they cannot return to the study site during the study period (e.g., long-distance relocation for 
long periods or killing). These simulations are analogous to removal of potential predators of domestic animals 
but can also be generalized to any wild animals damaging anything humans value. We followed methods in11,12 
but took them several steps further. The simulations in12 revealed that sample size and study design interact in 
a complex fashion to influence the probability of detecting true effects on population density change. Here we 
extended that study by holding sample size constant and investigating two sources of confounding effects. First, 
we investigated the influence of background interactions arising from correlations between baseline state and 
intervention (i.e., in our context, property loss and wildlife removal), which is analogous to self-selection or 
treatment bias. That is a very common interaction in predator control.

Second, we investigated the confounding effect of correlation between baseline property loss and subsequent 
property loss in the absence of intervention (temporal autocorrelation). This too is a common potentially 
confounding effect in our field because hot spots of wildlife damage have been reported in (almost) all taxa 
studied (reviewed in the Discussion).

We extended the results of8,11,12 by measuring error rates in simulations of study designs that use Pearson’s 
correlation coefficients when treatment effect sizes vary in magnitude and stochasticity. We used simple 
simulations that expose the rates of Type I errors, Type II errors and spurious correlations in which the direction 
of the sign of correlation is reversed when compared to the true direction of the cause and effect. We also 
calculated FPRs and over-estimation bias.

Our approach applies generally to many or all fields that investigate systems characterized by the baseline-
intervention-outcome or state-stimulus-reaction causal relationships, including so-called natural experiments. 
Our simulations modeled only three parameters and their interactions:1 loss of asset or resource prior to 
intervention, analogous to the baseline/state;2 removal of wildlife, shortly after time t, analogous to the 
intervention/stimulus; and3 loss after intervention, analogous to the outcome/reaction.

Methods
All variable names and definitions are presented in SM Table S1 along with definitions of study designs and 
models.

To test the traditional wildlife control hypothesis (negative effect of treatment) and more recent hypothesis 
(positive effect of treatment), we simulated losses of property such as the number of property units (e.g., 
domestic animals) Lt lost at time t, followed by the intervention as people removed W wild animals, and then we 
simulated losses in the next time step (Lt+1). To simulate crossover designs, we added W at time t + 1 resulting 
in Lt+2. We modeled all W and L as independent, normally distributed random, real numbers from zero to one 
inclusive, hereafter R. We varied background interactions (B) to mimic potential conditions in the real world 
(see Credibility of models below).

Estimating Type I and II error rates
Type I errors indicate false positives (we infer an effect of treatment when none exists) and Type II errors quantify 
false negatives (we infer no treatment effect when one exists). We simulated separately for each type of error, 
and separately ran simulations again with new iterations of random numbers. We also examined extreme Type 
I error when the sign of correlation was reversed over the true direction of cause-and-effect. In that simulation, 
we also examined extreme overestimation of treatment effects by > 2SD above a positive mean treatment effect 
or < 2SD below a negative mean treatment effect.

In step one, we set T = 0 for no treatment effect (W x T) and assigned B = 0, -1.16, + 1.16, -2.32, or + 2.32 to 
vary the potentially confounding background interactions described above. We combined different background 
interactions for Models 0–8 to estimate rates of Type I errors (Table 1, Panels A–D). We set the coefficients 
empirically to yield an average Pearson’s r = 0.50 (n = 1000 replicates, 10 iterations) so there would be an equal 
space in either tail for errors. We simulated 200 sets of 20 correlation coefficients with n = 50 replicates each (400 
iterations per scenario) for each of the 9 model permutations (3600 iterations per scenario-model).
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In step two, we repeated the same number of independent simulations as in step one but added a treatment 
effect. We simulated cause-and-effect relationships between W and Lt+1 (i.e., we set T = ± 0.58), to estimate rates 
of Type II errors (Table 1, Panels E–H).

For step three, we estimated FPR following8 as Type I error rate/[Type I error rate + (1- Type II error rate)] 
using data from Table 1 to construct Table 2.

In step four, we produced five new independent simulations (400 iterations each) to investigate variations 
of Type I error in which the lack of a treatment effect changed from a constant T = 0 to a normally distributed 
random variable centered on zero but with more or less variability per subject from − 0.5 to + 0.5, -1 to + 1, -2 to 
+ 2, -4 to + 4, and finally − 8 to + 8. This procedure simulates stochastic variability in response of subjects to the 
same treatment. Operationally, we created random T by subtracting two random numbers of equal magnitude 
from each other for every replicate. This is analogous to a treatment effect that varies by subject (see Credibility 
of models below).

We estimated Type I error rates again as above. We modeled with a generalized linear mixed model those error 
rates with four predictors (study design, variable treatment effect for each replicate, background interactions 
from Models 3 and 4, and the direction of Type I error - i.e., whether a spurious significant result emerged for a 
positive or a negative correlation).

In steps five and six, we explored extreme Type II errors. We ran seven simulations separate from those above 
(400 iterations each). For sign reversal, we counted the number of correlation coefficients that had an opposite 
sign as the real correlation regardless of the magnitude. In step five, for extreme errors we repeated the procedure 
in steps one and two but counted the number of treatment effect size estimates that exceeded the mean + 2SD 
for a positive treatment effect or fell below the mean − 2SD for a negative treatment effect. In step six, repeating 
steps three and four, temporal autocorrelation (B) varied from − 2.32 to + 2.32 independently of study design. We 
estimated mean and standard deviations of error rates in both steps (Figs. 1 and 2).

Simple correlation nBACI RCT † rBACI † Crossover design † Simple correlation nBACI RCT † rBACI † Crossover design †

Models
A. Background interactions 1.16 B. Background interactions 2.32

C. Type I errors D. Type I errors

 0 0.053 0.053 0.055 0.040 0.068 0.053 0.053 0.055 0.040 0.068

 1 0.055 0.515 0.068 0.745

 2 0.068 0.548 0.060 0.718

 3 0.050 0.050 0.075 0.060 0.043 0.038 0.045 0.053 0.048 0.035

 4 0.045 0.075 0.063 0.083 0.050 0.058 0.070 0.053 0.055 0.060

 5 0.225 0.145 0.405 0.105

 6 0.223 0.595 0.435 0.743

 7 0.240 0.615 0.448 0.760

 8 0.218 0.158 0.455 0.088

Models E. Type II errors, positive treatment F. Type II errors, positive treatment

 0 0.025 0.185 0.000 0.023 0.193 0.025 0.185 0.000 0.023 0.193

 1 0.005 0.385 0.000 0.010

 2 0.000 0.000 0.000 0.000

 3 0.245 0.195 0.020 0.020 0.190 0.515 0.475 0.350 0.238 0.203

 4 0.190 0.410 0.030 0.238 0.200 0.595 0.710 0.340 0.505 0.165

 5 0.005 0.135 0.000 0.000

 6 0.210 0.915 0.365 0.890

 7 0.000 0.000 0.000 0.000

 8 0.190 0.000 0.350 0.015

Models G. Type II errors, negative treatment H. Type II errors, negative treatment

 0 0.030 0.195 0.000 0.015 0.188 0.030 0.195 0.000 0.015 0.188

 1 0.000 0.000 0.000 0.000

 2 0.000 0.440 0.000 0.005

 3 0.255 0.220 0.033 0.030 0.185 0.640 0.500 0.275 0.173 0.205

 4 0.205 0.435 0.018 0.215 0.208 0.575 0.715 0.338 0.505 0.245

 5 0.180 0.005 0.385 0.025

 6 0.005 0.005 0.005 0.005

 7 0.180 0.890 0.370 0.895

 8 0.000 0.075 0.000 0.000

Table 1.  Error rates estimated with and without background interactions: (A) B = 1.16, (B) B = 2.32, (C, D) 
T = 0 for Type I error, (E–H) are set to T = 0.58 x W. Models 0–8 are described in SM Table S1. † Blank cells 
reflect that random assignment eliminates a correlation between W and Lt.
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In all steps, we chose deterministic and probabilistic scenarios in preference to empirical rates of property 
loss from the literature, because the latter would include unmeasured background interactions and unreported 
treatment (e.g., poaching), which would undermine our effort at measuring the odds of Type I and II errors.

Credibility of models
Background interactions simulate common situations in wildlife control. A positive correlation between W and 
Lt (Models 1 and 2, Table S1) mimics a common background interaction in which people kill more wildlife if 
losses were high in the past20. Probably uncommon, a negative correlation between W and Lt mimics when 
people kill fewer predators after high losses, e.g., when people and wildlife separate spatially after high losses21,22.

A positive correlation between Lt and Lt+1 (Models 3 and 4, Table S1) without intervention mimics a common 
temporal autocorrelation, in which sites with high losses one year have high losses the next year23,24. Possibly less 
common, a negative temporal autocorrelation mimics cyclical patterns of damage in non-sequential years. For 
example, when wild food availability influences bear (Ursus spp.) damage to crops and human foods, one may 
see a negative temporal autocorrelation of losses from year to year25,26. Or, if predators switch from domestic to 
wild prey selection based on their relative scarcity or vulnerability varying over time, we can see prey switching 
from season to season that might produce negative autocorrelations of losses in sequential time steps27–30.

The above set of four background interactions create univariate permutations. In the last four bivariate 
permutations (Models 5–8, Table S1), we simulated both sets of interactions occurring simultaneously in a two-
by-two matrix of positive or negative interactions.

For step four, when we varied the treatment effect size in every replicate, we mimicked a situation in which 
the same dose had variable effects on different replicates. For example, an individual predator may respond 
differently than its neighbor or the composition of social groups may affect how the survivors respond to 
removal of a group member, e.g., removing dominant individuals from a wolf pack is expected to have different 
effects than removing subordinate adults or pups from a pack, and even packs experiencing the same removal of 
dominant breeders might have different effects depending on timing and availability of replacement breeders31,32. 
Hence, the same dose (W) could have different treatment effects (T) depending on the idiosyncrasies of different 
replicates. Similarly, some individual predators might be attracted or repelled by vacancies left by removals of 
other predators33.

Alternately, any of the individuals involved might respond differently to lethal treatments. Theory provides 
five potential explanations for why the traditional hypothesis may fail33. In brief, the wrong predators may be 
killed34; survivors may prey on livestock that are more predictable than wild prey after the predators’ social group 

False positive rates (FPR), %

Models Simple correlation nBACI RCT † rBACI † Crossover design† Simple correlation nBACI RCT † rBACI † Crossover design†

A. Background interactions 1.16 B. Background interactions 2.32

C. Positive treatment ††

 0 5.2 6.1 5.2 3.9 7.8 5.2 6.1 5.2 3.9 7.8

 1 5.5 45.6 6.4 42.9

 2 6.4 35.4 5.7 41.8

 3 6.2 5.8 7.1 5.8 5.0 7.3 7.9 7.5 5.9 4.2

 4 5.3 11.3 6.1 9.8 5.9 12.5 19.4 7.4 10.0 6.7

 5 18.4 14.4 28.8 9.5

 6 22.0 87.5 40.7 87.1

 7 19.4 38.1 30.9 43.2

 8 21.2 13.6 41.2 8.2

D. Negative treatment effect ††

 0 5.2 6.2 5.2 3.9 7.7 5.2 6.2 5.2 3.9 7.7

 1 5.2 34.0 6.6 42.7

 2 6.4 49.5 5.7 41.9

 3 6.3 6.0 7.2 5.8 5.0 9.5 8.3 6.8 5.5 4.2

 4 5.4 11.7 6.0 9.6 5.9 12.0 19.7 7.4 10.0 7.4

 5 21.5 12.7 39.7 9.7

 6 18.3 37.4 30.4 42.8

 7 22.6 84.8 41.6 87.9

 8 17.9 14.6 31.3 8.1

Minimum 5.2 5.8 5.2 3.9 5.0 5.2 6.1 5.2 3.9 4.2

95% CI of mean 9–15 17–41 5–7 4–8 5–7 13–27 18–42 6–8 5–9 5–7

Table 2.  False positive rates (FPR) estimated from Type I and II error rates in Table 1 with background 
interactions: (A) B = 1.16, (B) B = 2.32, (C) positive treatment effect, (D) negative treatment effect. † Blank cells 
reflect that random assignment eliminates a correlation between W and Lt. †† Simulated positive treatments 
may produce different FPR than negative treatments.
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has been disrupted, e.g., pack hunting carnivores that rely on teamwork to hunt or reproduce successfully35; more 
immigrants may replace fewer residents that were killed36; smaller-bodied predator species at higher densities 
may refill the vacancies left by larger, scarcer predator species that died37; or humans and domestic animals may 
change their behavior after lethal intervention. When we consider the entire set of actors, wildlife, humans, and 
domestic animals, one can imagine inter-individual differences in response to lethal interventions. For example, 
some bold and tolerant individuals might explore wilder habitat after predator removal while others might 
continue to avoid those areas33. In short, the same treatment of different actors could result in diametrically 
opposed consequences even though the treatment did influence a subset of replicates. Despite different effects on 
different subjects, across replicates, the general effect of treatment approximates zero in scenarios with stochastic 
treatment effects. Therefore, our estimated Type I error rates illuminate FPR when treatment effects vary by 
subject replicate.

Analysis
We simulated all replicates in Apple Numbers 14.3 2023. We calculated Pearson’s r in JMP Pro V17.0.0 (SAS 2023). 
Pearson’s r is easily interpretable, dimensionless, and suitable for normally distributed, random variables38. With 
normally distributed response variables like L and change in L, Pearson’s r is unbiased and normal (Anderson-
Darling test A = 0.78, p = 0.05 and A = 0.37, p = 0.38, respectively). We calculated r in 20 batches of 50 replicates 
(analogous to independent sites or populations), a larger sample size than most studies of wildlife control. We 
used the standard critical value of |r| = 0.273 (two-tailed test at alpha = 0.05, n = 50 calculated from ​h​t​t​p​s​:​​/​/​w​w​w​.​​s​
t​a​t​i​s​​t​i​c​s​s​o​​l​u​t​i​o​​n​s​.​c​o​m​​/​f​r​e​e​-​​r​e​s​o​u​r​​c​e​s​/​d​​i​r​e​c​t​o​​r​y​-​o​f​-​​s​t​a​t​i​s​​t​i​c​a​l​​-​a​n​a​l​y​​s​e​s​/​p​e​​a​r​s​o​n​s​​-​c​o​r​r​​e​l​a​t​i​o​​n​-​c​o​e​f​​f​i​c​i​e​n​​t​/​t​a​b​​l​e​-​o​f​
-​​c​r​i​t​i​c​​a​l​-​v​a​l​​u​e​s​-​p​e​a​r​s​o​n​-​c​o​r​r​e​l​a​t​i​o​n​/, accessed 28 April 2025) in 400 iterations of each combination of scenarios 
(Table S1) for a total of 108,000 independent combinations. We calculated 400 correlations per simulation (108 
scenarios in Tables 1 and 25 scenarios for the mixed model of Type I errors, and 35 scenarios for extreme Type 
II errors) for a total of 67,200 Pearson r values including 50 independent replicates each. There were fewer 
scenarios for randomized designs because the background interactions of Lt correlated with W were eliminated 
by random assignment procedures (Table S1).

We involved neither animals nor human subjects in this research.

Fig. 1.  Severe Type II error resulting in reversal of the sign of correlation, in relation to temporal 
autocorrelation between Lt and Lt+1 (B). We present a curve fit by second-order ordinary least square regression 
for visualization purposes only; curves for each study design (dashed green = simple correlation, solid thick 
green = nBACI, gold = RCT, purple = rBACI, red = crossover). The x-axis presents varying levels of temporal 
autocorrelation from Models 3 and 4 (Table S1 for definitions). The y-axis presents the frequency of reversal 
of the true sign of correlation to the opposite sign estimated from 400 iterations of each combination of study 
design and value of B.
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Results
False positive rates (FPR)
Study designs differed noticeably in Type I and II error rates (Table 1) and, therefore, in FPR (Table 2). FPRs 
exceeded Type I error rates based on p values in 93% (100/108) of our simulations (Table  2). None of the 
scenarios had FPR < 1%.

The lowest FPR was 3.9% for rBACI (gold+ standard) when there were no background interactions (Table 2). 
In 8 scenarios, the FPR was 5.0% or less (4 scenarios with rBACI and 4 with crossover). Although rBACI had two 
of the lowest FPR (Table 2), it was outperformed by crossover when we introduced temporal autocorrelation in 
either direction, i.e., background interaction B due to correlation between Lt and Lt+1. Indeed, crossover designs 
had a lower average FPR across 12 scenarios (6.1%, SD 1.4%) than RCT (6.4%, SD 1.0%) and rBACI (6.5%, SD 
2.6%). Although these differences in FPR among randomized designs are small, the case for crossover design 
strengthened as we explain next.

We used a generalized linear mixed equation to model the interactions between confounding effects and study 
design on Type I error rates when treatment effects were centered on zero, but random in each replicate, i.e., no 
treatment effect in general (see Credibility of models above). The mixed model revealed significant fixed effects 
only for study design (df = 4, F = 78, p < 0.00001) and variable treatment effect for each replicate (df = 1, F = 31, 
p < 0.0001). Neither direction of error (df = 1, F = 0.2, p = 0.62) nor the magnitude of temporal autocorrelation 
(df = 6, F = 1, p = 0.44) were predictive of error. Also, study design and variable treatment effect for each replicate 
interacted significantly to predict the Type I error (df = 4, F = 64, p < 0.0001). Crossover performed best, because 
RCT and rBACI were somewhat vulnerable to randomly varying treatment effects (0.8% higher error rates), 
probably because the crossover design exposes each replicate to both control (treatment T = 0) and treatment (T 
varies randomly around zero) conditions.

By comparison to the randomized study designs, we cannot recommend simple correlation or nBACI 
(bronze and silver standard, respectively) because their FPR ranged from 5.2 to 42% and 5.8–88%, respectively 
(Table 2). Negative temporal autocorrelation (Model 4) made these designs particularly vulnerable with FPR two 
to three times higher than for positive temporal autocorrelation. The highest FPR arose in Models 5–8 (Table 2). 
Although nBACI was somewhat resistant to Models 5 and 8 when the background interactions were strong 
(B = 2.32), nBACI failed in most cases, including several ones with only one background interaction (Table 2). 
Although simple correlations yielded consistent FPR of 5-12.5% when we introduced only one background 
interaction, their FPR rose above 20% whenever we included two background interactions.

Severe Type II errors: overestimation and sign reversal
Compared to randomized designs, the rates of sign reversal for simple correlation and nBACI were higher (8% 
and 0.8% respectively; only simple correlation differed significantly from every other design, each t-test pairwise 

Fig. 2.  Overestimation of treatment effect in relation to temporal autocorrelation between Lt and Lt+1 (B). 
We present a curve fit by second-order ordinary least squares regression for visualization purposes only for 
each study design (dashed green = simple correlation, solid thick green = nBACI, gold = RCT, purple = rBACI, 
red = crossover). The x-axis presents varying levels of temporal autocorrelation from Models 3 and 4 (Table S1). 
The y-axis presents the frequency of overestimation of treatment effect < 2SD below and > 2SD above the mean 
estimated from 400 iterations per data point. Simulations are the same as in Fig. 1.
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comparison p < 0.0001) than randomized designs (RCT – 0.09%, rBACI – 2%, crossover – 0.08%, which did not 
differ among randomized designs, Welch test of unequal variances, F ratio = 2, p = 0.15).

Similarly, non-randomized designs had higher rates of overestimating treatment effect sizes (8% for 
simple correlation and 31% for nBACI), which differed significantly from randomized designs (p < 0.0001 for 
each pairwise comparison with nBACI and p < 0.009 for pairwise comparisons of simple correlation to each 
randomized design). Also, randomized study designs were statistically different in rates of overestimation error 
(RCT – 0.2%, rBACI – 1%, crossover – 3%, F ratio = 31, p < 0.0001).

As temporal autocorrelation increased, the rate of sign reversal increased and simple correlation was more 
strongly affected than nBACI (Fig. 1). The converse was true for overestimation error, which declined among the 
non-randomized study designs. Simple correlation was less prone to these errors than nBACI (Fig. 2).

Combining results in Fig. 3, we show some predicted differences in study design and unpredicted differences.

Discussion
We replicated published predictions that false positive rates (FPR) will generally exceed p-values. Such errors 
lead to spurious claims of discovery or spurious claims about the effectiveness of treatments. As predicted by8, 
our FPRs exceeded Type I error rates in > 90% of our simulations (Table 2). Therefore, we echo calls for lowering 
the statistical threshold for new discoveries from p = 0.05 down to much more conservative values, such as 0.0051. 
Regarding the strength of inference, we found support for some, but not all, of our hypotheses. As reported in3, 
study designs differed noticeably in Type I error (inferring a treatment effect when none exists) and Type II error 
(dismissing a treatment effect when one exists) rates (Table 1) and, therefore, in FPR (Table 2). Our results are 
consistent with12 who primarily simulated error rates in relation to sample sizes and study designs. We join them 
in calling for more care in randomized assignment or sampling. As with12, we found the randomized designs 
could make errors albeit far fewer than non-randomized study designs. Given FPR > 1% seems risky for strong 
inferences, we recommend lowering the threshold for significance level to p ≤ 0.01, even when randomized 
designs are employed.

Our results also corroborate prior cautions to measure and account for temporal autocorrelation18. Temporal 
autocorrelation is a common condition in our field because of the widespread and frequent reports of hot spots 
of persistent damage by wild animals year after year23,39–42. Some simulated Type II error rates were very high 
(Table 1), which by itself may not raise concern because Type II error conservatively leads to the inference of no 
effect when one exists. However, reporting an opposite sign of correlation than the real direction of correlation 
when a treatment is effective would be an extreme form of Type II error that merits concern (Fig. 1). Also, 
when we overestimate the real effect substantially (e.g., > 2 standard deviations above a positive mean or below 
a negative mean), exaggerated claims about treatment effectiveness can mislead users, payers, and distributors 
of that treatment (Fig. 2).

Randomized designs outperformed non-randomized designs significantly. Because Type I error rates 
contribute to FPR directly, the crossover design (platinum standard) provided a stronger inference than the 
other study designs we tested3. Although one might be tempted to look at a few low Type I error rates in Table 1 
for simple correlation and nBACI, and declare these study designs viable in many circumstances, the FPRs in 

Fig. 3.  Relative strength of inference (100% - mean error rate) for crossover (platinum), RCT (gold), rBACI 
(gold+), nBACI (silver), and simple correlation (bronze). The height of polygons is scaled to the 95% CI 
within each panel: (A) False positive rates, (B) Rates of overestimating a treatment effect, and (C) Rates of sign 
reversal. Side-by-side bars (e.g., Panel A’s platinum and gold standards indicate an identical mean and 95% 
CI but stacked bars indicate that means were not identical (e.g., Panel C). See definitions of study designs and 
color codes in Table S1.
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Table 2 warn against such confidence. Also, with FPR for simple correlation averaging 16% and nBACI averaging 
29%, in the absence of good evidence about background interactions, one should not credit these study designs. 
Indeed, in many situations, particularly under field conditions surrounding wildlife control interventions, 
researchers will have little or no evidence to dismiss background interactions.

Here, we broaden our definition of ” wildlife control” or “predator control” interventions beyond the removal 
of wildlife that might damage property. This is because we are aware that some of our concerns and inferences 
apply to interventions that do not remove wildlife but instead deter them or constrain their movements. 
Therefore, we use wildlife control or predator control to mean any intervention intended to prevent wildlife/
predators from damaging things humans value or reduce the severity of such damage. This definition is not as 
broad as conflict mitigation43,44 or coexistence strategies45,46, both of which are widely discussed in our subfield. 
The intention to intervene (in our definition) is important to distinguish control methods from incidental 
features that affect vulnerability of property. By ‘things humans value’, we broaden considerations to include prey 
claimed by human hunters, human safety and even indirect side-effects such as stress-provoked insomnia and 
low livestock productivity.

Even when such evidence for background interactions is robust and well-accounted in the analyses, few 
researchers in our field can build a sample size of 50 on which our simulations depend. Therefore, FPR values in 
Table 2 are likely under-estimates of what others will encounter with smaller samples, variable treatment effects 
for each replicate, deviations from the assumptions of Pearson’s correlations, and measurement errors8.

Our predictions of the relative strength of inference among study designs were only partly supported3. The 
predicted difference between simple correlation (bronze standard) and nBACI (silver standard) held for sign 
reversal (Fig.  1), but not for overestimation bias (Fig.  2) or most FPR estimates (Table  2). Similarly, the so-
called gold+ standard of rBACI compared to gold-standard RCT did not play out as we predicted3. Yet, our 
predictions about crossover design (platinum standard) producing stronger inference than RCT and rBACI 
(gold standards) were supported. Therefore, we revised our first hypotheses3 by producing a schematic graph of 
the relative strengths of inference estimated for five common study designs (Fig. 3).

Some public authorities may not test treatments with randomized, controlled trials (RCT) or similar robust 
experimental designs because they perceive intervening as infeasible or impractical. Perhaps decision-makers 
who feel accountable to the broad public, researchers and local participants might believe the treatments would 
be popular, but placebo controls would not47. Therefore, authorities may prefer to intervene in ways they consider 
less controversial, such as treating all subjects or serving the loudest complainants, e.g., see web panel 1 in5. Such 
steps that lead to non-randomized study designs risk backfiring with counter-productive outcomes or wasting 
time and resources. If fairness to human participants is a major concern, crossover designs offer participants 
both treatment and placebo control (randomized order) which were perceived as fair by participants in several 
studies of predator control48,49. Alternately, study participants may be assured of receiving effective interventions 
when the project ends47,50,51.

Without randomization, we see several common biases that interfere with reliable evidence and strong 
inference. When subjects are self-selected (self-selection bias), vulnerable subjects receive higher doses 
(treatment bias), or baseline conditions affect outcomes and not just treatments (e.g., temporal autocorrelation), 
we can expect high FPR (Fig. 3) which will result in inaccurate conclusions about interventions. Such errors are 
especially common for non-random before-and-after comparisons of interventions (nBACI, silver standard). 
Although simple correlations (bronze standard) performed better than we expected (Fig.  3), they still had 
unacceptably high error rates to posit predator control as reliable.

When background interactions were strong, FPR tended to rise sharply for most study designs (Table 2). 
When both sets of background interactions coincided, we estimated that wrong conclusions would be drawn 
in 18–42% of simple correlation studies and even more variably in 8–88% of non-randomized, before-and-after 
comparison of impacts (nBACI) studies (Table 2). Also, when temporal autocorrelation is present, the results 
of non-randomized study designs will produce additional errors even if the study is designed to minimize false 
positives. Non-randomized designs pose a considerable risk of the reversal of the sign of correlation, which 
can substantially mislead researchers and practitioners about the treatment effect (Fig. 1). If sign reversal does 
not occur, overestimation of treatment effects is also possible (Fig. 2). These compounding errors associated 
with non-randomized study designs can be visualized as a hierarchy of weak and strong inference (Fig.  3). 
We recommend no policy decision be made based on non-randomized studies of wildlife control (as we have 
defined it above), because drawing a conclusion that is diametrically opposed to the truth is highly likely. In such 
cases, inaction is preferable to hasty, unwise action.

Unlike randomized designs, non-randomized designs produce errors asymmetrical regarding positive or 
negative background interactions (Figs. 1 and 2). Namely, positive temporal autocorrelations produced more 
sign reversal errors and fewer overestimation errors in non-randomized designs than did negative temporal 
autocorrelations. Christie et al.12 also reported asymmetries (e.g., their Fig. 4b). The asymmetry we report here 
would tend to confuse the direction of the treatment effect more often when outcomes correlate positively to 
baseline conditions (Fig. 1); this situation is common in predator control where hot spots of wildlife damage 
recur annually (see Credibility of models in Methods). In short, whenever researchers find that losses of property 
recur in the same places when no interventions have occurred, they should suspect temporal autocorrelation of 
losses and be especially skeptical of non-randomized studies of effectiveness of interventions (Fig. 1).

Another common reason for unreliable inferences from non-randomized studies is the frequent response 
to losses by reactive (after the fact or ex post-facto) intervention at those properties or herds that suffered past 
losses. Whenever researchers note that a property suffered losses in the past and therefore received repeated 
intervention(s), they should suspect selection bias and be skeptical of non-randomized study designs (see 
Credibility of models and error rates in Table 2 when T is correlated to Lt).
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Regrettably, predator control has been dominated by non-randomized studies. Hence, predictably, there 
are few clear scientific consensus-based conclusions about the effects of predator control on subsequent losses, 
particularly in case of lethal treatments14–16. For example, non-randomized study designs have produced 
equivocal results for lethal predator control including recurrent findings of counter-productive increases in 
domestic animal losses following killing gray wolves52–56, bears26,57,58, and cougars (Puma concolor)59,60. Theory 
provides five potential explanations for why the traditional hypothesis may fail33.

Even well-financed RCT studies across broad areas may be hard to interpret, e.g., UK-funded RCT of badger 
(Meles meles) killing to prevent bovine tuberculosis documented variable effects of this intervention that can be 
difficult to detect or interpret61–66. Even methods considered politically unpalatable but highly effective, such as 
poisoning red foxes (Vulpes vulpes) in Australia to protect sheep, when tested with RCT prove highly variable 
in effect67. Also, there is a controversy over dingo (Canis dingo) killing that seems to suggest that numerous 
confounding variables modify desirable and undesirable effects of lethal interventions68–70. In Australia, the 
scientific consensus seems to be coalescing around a conclusion that poisoning foxes or dingoes wasted much 
effort and was weakly effective to ineffective because it produced very slight decreases in domestic animal 
mortality if the killing was not carefully regulated and monitored. Despite the above doubts, lethal methods are 
rarely subjected to RCT as summarized above.

More randomized studies of wildlife control in wild ecosystems have been conducted on non-lethal methods 
to prevent wild animals from accessing something of value to people, see these overviews5,47,48,51,71–73 and studies 
of particular species74,75. A small set of studies experimentally testing lethal interventions with RCTs is a concern. 
An analogy would be to ignore experiments on handgun control76, while subjecting, say, pepper spray to robust 
RCT. Moreover, in the absence of scientific consensus the historical intervention of killing predators continues 
unabated despite years of criticism5,61.

The resilience of lethal treatments in policy circles may reflect a perceptual bias of “cherry picking” arising 
from the adoption of a few effective cases and the dismissal of more numerous ineffective cases35,55,56. Cherry-
picking examples where interventions seemed to work might arise from differential response of different 
subjects to similar treatments. Our mixed models show that treatments that help some replicates and harm 
others will raise FPR with worrying frequency in non-randomized studies. Early on, Santiago-Ávila et al.55 noted 
that perceptions of effectiveness could spread among members of the public even if the evidence for functional 
effectiveness is absent77. In addition, animal killing may fall into another perceptual bias because humans cannot 
recognize individual animals, some of which are culprits and some of which are not34,35; relatedly, some persons 
may claim a lethal treatment has succeeded because the death of a competitor might have been their primary 
goal regardless of its culpability.

If a non-randomized design is analyzed despite our cautions above, researchers should account for potential 
self-selection bias, treatment bias, and temporal autocorrelation. For example, lethal wildlife control studies 
should measure (a) killing and property losses before that killing occurred, and (b) property losses from year 
to year in the absence of intervention17,18,55. The absence of intervention includes unplanned or unregulated 
interventions by the people participating or using the same areas (e.g., illegal killing). This is a very difficult 
hurdle to overcome without strict regulation of participant actions because predator killing can still be present 
as an illicit behavior and hushed up78–80. Therefore, we suggest randomized designs in smaller, well-regulated 
sites are likely to be more feasible than strict experimental control over potentially confounding variables across 
wider regions. Even for randomized designs, we counsel care because FPR does not diminish to zero. To lower 
the risk of FPR, we recommend the platinum-standard crossover design RCT (all subjects receive both treatment 
and placebo in random order), lowering the significance threshold1, or other safeguards against bias3.

A common argument for drawing inference from non-randomized studies has been that experts can infer 
accurately despite confounding variables17. For example, expert-based adaptive managers claim they can 
intervene, learn, and revise without exacerbating the problems at hand and without exposing hypotheses to 
experimental test2,81. That argument depends on learning correctly. The counter-argument is that biased designs 
and lower standards hinder learning with false information and can produce inferences diametrically opposed 
to the actual effect of interventions6,82. Our results of sign reversal in treatment effects support the latter concern. 
Therefore, prioritizing randomized designs for urgent and important policy decisions may avoid the age-old 
problem that haste makes waste. The reasoning here provides a guide to donors, regulators, and the public to 
anticipate situations in which RCT becomes a prerequisite for reliable inference and sound policy.

Data availability
For scripts and a full spreadsheet with 1000 rows of data for a single iteration of each simulation, see ​h​t​t​p​s​:​​/​/​f​
a​c​u​​l​t​y​.​n​e​​l​s​o​n​.​w​​i​s​c​.​e​​d​u​/​t​r​e​​v​e​s​/​d​a​​t​a​_​a​r​c​​h​i​v​e​s​​/​S​i​m​u​l​​a​t​e​_​s​t​​u​d​y​_​d​e​​s​i​g​n​s​_​s​c​r​i​p​t​s​_​d​a​t​a​_​a​r​c​h​i​v​e​.​z​i​p, accessed August 
2025.
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