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Carbon prices

Fig. S1 shows 3 pathways for carbon prices. First, we use the prices that
emerge from the ‘optimal’ climate policy calculated by Nordhaus (2008);
about $10/tCO2 in 2010 escalating at 2%/year. We refer to this as the
‘low policy’ case. Second, as our ‘high policy’ case, we employ the prices
assumed in a recent modeling project by Johansson et al. (2009), which
assumes prices starting at $20/tCO2 in 2010 escalating at 5%/year. Finally,
as our ‘mid policy’ case, we use a combination of the two; $10/tCO2 in 2010
escalating at 5%/year. We use this ‘mid policy’ case as our base assumption
for climate policy (Fig. S1). It is important to note that these carbon price
pathways are not tied to any specific stabilization targets. For example, the
low path of carbon prices is based on an optimization model (DICE-2007)
that minimizes the sum of abatement costs and climate damages; it does
not target a concentration level.

Deployment

We model gradual deployment of air capture over the century such that
it eventually offsets a substantial portion of human emissions. Based on
Pielke (2009), we assume removal of 750 gigatons of C (2.8GT of CO2) over
the course of the 21st century. A wide array of empirical case studies have
found that new technologies tend to diffuse into widespread use according to
a logistic function (Griliches, 1960; Mansfield, 1961; Fisher and Pry, 1971;
Grubler, 1991). Adoption of technology tends to be slow early on when
reliability is unproven and only early adopters risk using the new device;
it accelerates as initial problems are worked out and complementary inno-
vations enable widespread adoption; finally, diffusion slows as substitutes
emerge and the market reaches saturation Rogers (1958). Based on pre-
vious work on the diffusion of innovations (Rogers, 1958; Griliches, 1960;

S2



Supporting Information for: Willingness to pay for a climate backstop

2010 2015 2020 2025 2030 2035 2040 2045 2050
0

50

100

150
20

10
$/

tC
O

2

 

 
Strong CO2 policy
Mid CO2 policy
Weak CO2 policy

Figure S1: CO2 prices (2010$/tCO2) under three assumptions about strin-
gency of climate policy.

Mansfield, 1961; Fisher and Pry, 1971; Grubler, 1991), we apply a logistic
function to model technology adoption (Fig. S2).

Research, development, and demonstration

We estimated the timing and size of a research, development and demon-
stration program to commercialize air capture technology. Specifying these
values involves large uncertainty with only partial guidance available. Still,
some analogs do exist and we make use of those to the extent they are rele-
vant. One avenue for estimation in this area is expert elicitation, in which
R&D values and outcomes are arrived at using a process that makes use
of expert judgment. This method has been recommended by the National
Academies (NRC, 2007) and has been successfully used for a related technol-
ogy, carbon capture and sequestration (Rao et al., 2006; Baker et al., 2009;
Chung et al., 2011). In the case of air capture, too few experts exist and the
technology is too early stage to conduct a reliable elicitation exercise. How-
ever, the pace of interest and effort in this area is such that expertise may
become sufficient to conduct such an exercise in the coming years. We thus
make use of the historical analogs available in making assumptions about
the timing and size of investments to fund RD&D activities.

The full RD&D program includes two components:

• Research and Development : The R&D program lasts for 20 years
(2010–2029) with the goal to prove technical feasibility and develop

S3



Supporting Information for: Willingness to pay for a climate backstop

2000 2050 2100
0

2000

4000

6000
N

ew
 p

la
nt

s

2000 2050 2100
0

50

100

150

T
ot

al
 p

la
nt

s 
(0

00
s)

2000 2050 2100
0

50

100

C
O

2 
re

m
ov

ed
/y

r

2000 2050 2100
0

1000

2000

3000

C
um

. r
em

ov
ed

Figure S2: Deployment of air capture technology. Top: new plants installed,
cumulative plants installed. Bottom: annual gigatons of CO2 removed; cu-
mulative gigatons of CO2 removed.

new materials and designs that would reduce the long term costs to
below the floor level described above. In the first phase (2010–2014),
$2b is invested annually to improve efficiency, and scale up the size of
pilot plants. In the second phase (2015–2019) $2b/year funds similar
activities to those in phase 1 but with new focus on improving the
performance of early demonstration plants, which are constructed in
this period. In the third phase (2020-2029), funding is scaled down to
$1b/year as emphasis shifts to monitoring, evaluating and improving
the construction and operations of full scale commercial plants that
begin in 2020. The cost of the R&D program from 2010–2029 is $30b
in un-discounted 2010 dollars (present value is $19b discounted at 7%).

The choice of a 10-year research program is based on other work look-
ing at energy technologies in which a 10-year period is used (NRC,
2007; Nemet and Baker, 2009). The notion that R&D continues after
commercialization is drawn from work on case studies of energy tech-
nologies, in which post-commercial R&D is required to address new
problems that emerge at full-scale (Mitchell et al., 2011; GEA, 2011).

The levels of investment are based on historical investment levels in
bringing technologies to full scale, such as fossil and nuclear (Nemet
and Kammen, 2007; Gallagher et al., 2011).

The increase in funding from phase 1 to phase 2 is based on the need to
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increase resources as work progress toward the construction of larger
and increasingly complex prototypes (GEA, 2011). The doubling in
funds from phase 1 to phase 2 is taken from work on modeling R&D
outcomes in CCS (Baker et al., 2009).

• Demonstration: Non-commercial demonstration plants are built from
2015–2019. We assume that these plants are 50% more expensive to
build and operate than the first commercial plants that come on line
in 2020. A wide array of empirical case studies have found that new
technologies tend to diffuse into widespread use according to a logis-
tic function (Griliches, 1960; Mansfield, 1961; Fisher and Pry, 1971;
Grubler, 1991). Deployment follows this functional form because the
population of early adopters, intermediate adopters, and laggards is
normally distributed Rogers (1958). We use this theory of technology
adoption and the resulting logistic function in Fig. S2 to estimate that
67 full scale 0.5MT/year plants will need to be built before 2020. We
assume that construction of these 67 demonstration plants increases
from 5 in 2015 to 32 in 2019. The cost of building these plants and
operating them at full capacity until the end of 2019 is $30.6b in un-
discounted 2010 dollars (present value is $18b discounted at 7%).

We also include the possibility of a limited RD&D program in which half as
much is spent on R&D ($15b) and only half the demonstration plants are
built ($16b). We call the full program High RD&D and the limited program
Low RD&D and denote the amount of RD&D investment in net present
value, R.

Effects of scale and learning by doing

We assume that capital costs for air capture plants decline with cumulative
plants produced. This assumption fits with findings of learning by doing and
economies of scale in production facilities (Wright, 1936; Rapping, 1965;
Remer and Chai, 1990). Improvements in both O&M and energy costs
accrue to learning by using (Rosenberg, 1982). As a result we assume these
costs decline with the cumulative amount of CO2 removed. The relationships
between production and cost is assumed to follow a power function as in
previous work on estimating the future costs of nascent energy technologies
(Rubin et al., 2007; Nemet, 2009). As in previous work on the costs of
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Figure S3: distribution of learning rates.

nascent technologies (Nemet, 2009), we use:

cn = cm

(
En−1

Em

)b

(1)

where cn is the cost at year, n and cm is the initial cost at year m, that is
where cumulative experience is Em. We use learning rates from the previous
work on carbon capture at power plants, the closest analogy for air capture
(Rubin et al., 2007; van den Broek et al., 2009).

We compiled learning rates from related technologies (Fig. S3 and Table
S1). Two studies estimate learning rates for an array of technologies related
to CCS, such as pulverized coal plants, IGCC and pollution controls (Rubin
et al., 2007; van den Broek et al., 2009). Table S1 shows these values. We
calculate the median of learning rates estimated in those studies for capital
and O&M and use those in our model: 0.105 for capital cost, 0.125 for O&M,
which we also apply to energy use.

The value for b is related to the learning rate (L) as follows:

b =
ln(1− L)

ln(2)
(2)

producing values for b of -0.15, -0.21, and -0.21. The L values for capital
cost and O&M are slightly below the mode of the distribution of historical
learning rates as surveyed by Nemet (2009)(Fig. S3).
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Table S1: Estimates of learning rates for technologies related to carbon
capture and sequestration.

Analogous Capital Operations &
technology cost maintenance
Flue gas desulfurization 0.110 0.220
Hydrogen steam methane reforming 0.270 0.270
Integrated coal gasification combined cycle 0.000 0.000

0.100 0.050
0.100 0.060
0.110 0.220
0.120 0.220
0.140 0.120

Liquified natural gas 0.140 0.120
Natural gas combined cycle 0.000 0.000

0.100 0.060
0.100 0.060
0.110 0.220

Oxygen production 0.100 0.050
Pulverized coal 0.000 0.000

0.050 0.180
0.060 0.150
0.110 0.220
0.120 0.220

Selective Catalytic Reduction 0.120 0.130
0.168 0.269

Summary statistics
mean 0.101 0.135
median 0.110 0.130
std. dev 0.060 0.092
n 21 21
max 0.270 0.270
min 0.000 0.000
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Figure S4: Components of air capture cost, under technical outcome 3 (fea-
sible, no floor).

Air capture cost outcomes

We used a survey of existing literature on air capture costs and on leanring
rates to calculate future costs of the components of air capture technology
(Fig. S4). Fig. S5 shows the costs of air capture technology under 3 techni-
cal outcomes. Outcome 1 is that air capture technology is discovered to be
not commercially feasible. Outcome 2 is that the technology is commercially
feasible but has a lower limit on costs, below which it cannot go regardless of
production-based improvements. Outcome 3 is that the technology is feasi-
ble and is not subject to the lower bound. Under our base case assumptions
(outcome 2), the lower bound is reached in 2029.

Sensitivity of air capture development costs

Fig. S6 summarizes the sensitivity analysis on the costs to develop air cap-
ture. The table shows values for net present value given varying assumptions
on values for input variables. The effect of CO2 policy and discount rates
are considered across changes to all other variables. Fig. S7 is similar to
Table 6, but focuses on the effects of technological outcomes, rather than
CO2 policy.
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Figure S5: Costs of air capture technology under 3 technical outcomes: (1)
infeasible, (2) feasible, with floor, and (3) feasible, no floor. Outcome 2
represents our base case.

Figure S6: Summary of sensitivity analysis for air capture model. Values
are net present value of costs to develop air capture in $billions (R + S).
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Figure S7: Summary of sensitivity analysis for air capture model. Values
are net present value of costs to develop air capture in $billions (R + S).
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